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Abstract 

This paper studies the identification and estimation of treatment response with 

heterogeneous spillovers in a network model. We generalize the standard linear-in-means 

model to allow for multiple groups with between and within-group interactions. We 

provide a set of identification conditions of peer effects and consider a 2SLS estimation 

approach. Large sample properties of the proposed estimators are derived. Simulation 

experiments show that the estimators perform well in finite samples. The model is used to 

study the effectiveness of policies where peer effects are seen as a mechanism through 

which the treatments could propagate through the network. When interactions among 

groups are at work, a shock on a treated group has effects on the non-treated. Our 

framework allows for quantifying how much of the indirect treatment effect is due to 

variations in the characteristics of treated peers (treatment contextual effects) and how 

much is because of variations in peer outcomes (peer effects). 

JEL No.: C13, C21, D62 
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Indirect Treatment Effect 
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1 Introduction 

The program evaluation literature focuses on estimating the program effects without exter-
nalities. There is a growing awareness, however, that there may be indirect effects that are 
important to measure (see Manski, 2013). Existing methodological contributions as well as 
studies collecting empirical evidence are still scarce. In particular, while there are a few pa-
pers about the identification and estimation of treatment response with interactions (Hudgens 
and Halloran, 2008, Miguel and Kremer, 2004 and Sinclair et al., 2012 ), to the best of our 
knowledge there are no studies that consider the presence of heterogeneous interactions. 
Angelucci and De Giorgi (2009) estimates the indirect effects of the flagship Mexican 

welfare program, PROGRESA, on the consumption of ineligible households. This study finds 
that cash transfers to eligible households indirectly increase the consumption of ineligible 
households living in the same village. These findings are clearly very important for designing 
policies as well as developing experiments to evaluate them.1 The framework, however, does 
not determine how much of the spillover is due to effects from eligible to ineligible subjects, 
effects within ineligible (eligible) subjects and feedback effects. It identifies the presence of 
indirect effects by comparing outcomes between untreated household in untreated villages and 
untreated households in treated villages. When network data are available, the analysis can 
be pushed forward and the heterogeneous impact of policies can be modeled and quantified. 
Heterogeneity can be conceived in different ways. First, treatment heterogeneity, when the 

intensity or type of treatment can differ depending on the treated unit. Second, treatment 
effect heterogeneity when the treatment is the same for each agent but its effect is different 
depending on her characteristics. Third, interaction-driven heterogeneity, when the diffusion 
of the treatment effect through interactions generates an heterogeneous individual response. 
This may be due to both differences in interaction strengths within and between groups and 
to network structure, if data on connections are available. Several papers have focused on the 
first two types of heterogeneity.2 In this paper we focus on the third kind of heterogeneity. 
Using a network approach, our analysis brings three contributions to this literature. First, 

we derive analytically the bias that arises if spillovers are ignored. Second, we provide es-
timands for understanding whether different types of untreated - eligible or ineligible- are 
differently impacted by the treatment. Finally, our framework allows us to distinguish be-
tween different sources of treatment transmission - in particular, how much of the treatment 
response is generated by variations in the charactristics of treated peers( treatment contextual 
effects) and how much is due to spillovers through outcomes (peer effects). More specifically, 
our paper provides a network-based approach to estimate the average effects of the treatment 
in the presence of spillovers on subjects both eligible and ineligible for a program, accounting 
for heterogeneous within and between-group spillover effects. We show that heterogeneity in 

1More specifically, policy interventions should internalize the externalities that they engender, and exper-
iments to evaluate their effectiveness should consider the effects on the entire local economy (e.g. the school, 
the village, the city), rather than focusing on differences between treatment and control group from the same 
local entity. When spillovers are at work, both groups’ performance may change. 

2See Imbens and Woolridge (2009) for a revision of recent studies using matching and non-parametric 
methodologies to address the second type of heterogeneity. Remarkably, Crump et al. (2008) proposes a 
non-parametric test for subpopulation heterogeneity in the effect of the treatment. Firpo (2007) proposed a 
quantile treatment estimation where the heterogeneity is given by the position of unit in the pre-treatment 
outcome distribution. Other papers employ more complex techniques to allow both the first and second type of 
heterogeneity. Among the others, generalized cross-validation statistic (Imai, Ratkovic, et al., 2013), boosting 
(LeBlanc and Kooperberg, 2010), Bayesian Additive Regression Trees (Chipman et al., 2010) have been used. 
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the effects is both helpful in terms of identification and harmful for traditional estimation 
methods. We develop an estimation approach able to provide reliable estimates of all the 
cascade effects that stem from a given network topology. 
Interaction among agents can be modeled in several ways. When the exact topology of 

connections is know, one possibility is to consider the peer effects that stem from the given 
network structure. There is a large and growing literature on peer effects in economics using 
network data.3 The popular model employed in empirical work is the Manski-type linear-
in-means model (Manski, 1993). Three assumptions underlie this statistical model: (i) the 
network is exogenous, (ii) the effects of all peers are equal, (iii) peer status is measured with-
out error. Although these assumptions may be restrictive in empirical analyses, only a few 
recent papers consider alternative models and methods in which some of these assumptions 
are relaxed. Point (i) has been recently studied by Goldsmith-Pinkham and Imbens (2013) 
and Hsieh and Lee (2011) who propose parametric modelling assumptions and Bayesian in-
ferential methods to integrate a network formation model with the study of behavior over 
the formed networks. Point (iii) belongs to another strand of recent literature which looks 
at the consequences of peer-group misspecification, focusing in particular on sampling issues 
(see Chandrasekhar and Lewis, 2011, Liu, Patacchini, and Rainone, 2013 and Liu, 2013a). In 
this paper, we consider the specification and estimation of a peer effects model when assump-
tion (ii) is removed. Lee and Liu (2010) considers a peer effects model with one endogenous 
variable and one adjacency matrix in a multiple network context, with no between-network 
interactions. Liu (2013) extends this model to the case of two endogenous variables and one 
adjacency matrix. In this paper, we allow the model to have two endogenous variables, two 
adjacency matrices, and both within and between-group interactions. We also consider the 
generalization to the case of multiple endogenous variables.4 To the best of our knowledge, 
we are the first to consider models of peer effects where different peers are allowed to exert a 
different influence and where both within and between groups interactions can be at work.5 

We maintain assumptions (i) and (iii). 
We show that the multiple group structure of the model requires modifying the conven-

tional identification conditions (Bramoullé et al., 2009 and Cohen-Cole et al., 2012) and has 
interesting connections with the concepts of chains and Tree-indexed Markov chains (see Ben-
jamini and Peres, 1994). 
We propose efficient 2SLS estimators using instruments based on the two reduced forms. 

We show that the standard IV approximation (Kelejian and Prucha, 1998, Kelejian and 
Prucha, 1999 and Liu and Lee, 2010) involves a huge number of IVs, even if we use a low de-
gree approximation of the optimal instruments.6 For this reason, we consider many-instrument 
asymptotics (Bekker, 1994) allowing the number of IVs to increase with the sample size. 
Differently from Lee and Liu (2010) and Liu (2013b) where the many instruments derive 

from the multiple network framework, in our model the many instruments derive from the (ap-
proximation of the) multiple adjacency-matrix framework. A multiple matrix framework does 
not only result in an increasing number of instruments but also yields multiple approximations 

3See Jackson and Zenou, forthcoming 2013, part III, for a collection of recent studies. 
4There is a long tradition in spatial econometrics looking at spatial autoregressive models with multiple 

endogenous variables (see Kelejan and Prucha, 2004). In the spatial econometrics context, however, the 
adjacency matrix is the same for all endogenous variables, and no groups are considered. 

5Goldsmith-Pinkham and Imbens (2013) also estimate a model with two peer effects, but without cross 
effects, using a Bayesian estimation method. 

6See Prucha (2013) for a review of Generalized Method of Moments estimators in a spatial framework. 
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of the optimal instruments. As a result, we show that the form of the many-instrument bias 
differs, though the leading order remains unchanged. We also propose a bias-correction pro-
cedure. Simulation experiments show that the bias-corrected estimator performs well in finite 
samples. When the number of endogenous variables is allowed to grow, our estimator remains 
consistent and asymptotically normal if the number of endogenous variables grows more slowly 
than the sample size. Finally, we investigate the bias occurring when the interaction struc-
ture is misspecified. We derive analytically the bias that occurs when only within-group peer 
effects are considered, i.e when interactions between groups are at work but ignored by the 
econometrician. We then use a simulation experiment to evaluate this bias in finite samples. 
In the last part of the paper we show the empirical salience of our model for policy purposes. 

As highlighted by Manski (2013), the policy maker can rarely manipulate peer outcomes. Peer 
effects, however, can be seen as a mechanism through which the treatment could propagate 
through the networks. If peer effects are at work, then the policy intervention has not only a 
direct effect on outcomes but also an indirect one through the outcomes of connected agents 
(i.e. the so called ”social multiplier”). We show via Monte Carlo simulations that the presence 
of heterogeneous peer effects and between-group interactions may create unexpected, or some-
times paradoxical results if the policy maker ignores the heterogeneity of interactions among 
groups. Our results can be helpful to explain why several policy programs do not accomplish 
the expected goals. 
The paper is organized as follows. The next section introduces the econometric model. 

Identification conditions are derived in Section 3, and in Section 4 we consider 2SLS estimation 
for the model. Section 5 investigates the bias occurring when the interaction structure is 
misspecified. We devote Section 6 to show the importance of our analysis for the identification 
of treatment response with spillovers. We first derive estimands for direct, indirect and total 
effects of treatment strategies in network settings with interactions. Then we use a simulation 
experiment to show the extent to which the heterogeneity of the endogenous effects can affect 
the outcome response for different groups. Section 7 concludes. 

2 The Network Model with Heterogeneous Peer Effects 

A general network model has the specification 

Y = φGY + Xβ + G ∗ Xγ + �, (1) 

where Y = (y1, . . . , yn)
0 is an n−dimensional vector of outcomes, G = [gij ] is an n × n 

adjacency matrix, gij is equal to 1 if i and j are connected, 0 otherwise. G∗ is the row-P∗normalized version of G, where gij = gij / j gij . X is a n × p matrix of exogenous variables 
capturing individual characteristics. � = (�1, . . . , �n)0 is a vector of errors whose elements are 
i.i.d. with zero mean and variance σ2 for all i. For model (1), φ represents the endogenous 
effect, where an agent’s choice/outcome may depend on those of his/her peers on the same 
activity, and γ represents the contextual effect, where an agent’s choice/outcome may depend 
on the exogenous characteristics of his/her peers. Let X∗ = (X, G∗X) and β∗ = (β, γ). 
Let A and B be two countable sets (types) of individuals (e.g. males and females, blacks 

and whites) such that A ∩ B = ∅ and n = na + nb is the cardinality of A ∪ B, with na and nb 

being respectively the cardinalities of A and B. Let us define Y = (Ya 
0, Yb 

0)0 , X = (Xa 
0 , Xb 

0)0 ,� � 
Ga Gaband G = . For instance, the subscript a denotes that Y, X ∈ A, G is formed only 
Gba Gb 

4 
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among nodes of type A and the subscript ab denotes the fact that links are directed from b to 
a.7 Appendix A defines regularity conditions. 
Model (1) can be written as 

∗ β ∗ + G ∗ Ya = φaGaYa + φabGabYb + Xa a abXbγab + �a, (2) 

∗ Yb = φbGbYb + φbaGbaYa + Xb 
∗ βb + G ∗ 

baXaγba + �b, (3) 

where β∗ = (βa, γa), X
∗ = (Xa, G

∗ ), X∗ = (Xb, G
∗Xb) β

∗ = (βb, γb), and �a and �b are i.i.da a aXa b b b 

errors with variance σ2 and σ2, respectively. Let us suppose for simplicity that σ2 = σ2 = σ.a b a b 

Model (2) - (3) is a generalization of the standard framework in the sense that it allows 
endogenous effects to be different within and between groups. If we stack up equations (2) 
- (3) and restrict the endogenous effect parameters of the two equations to be the same (i.e. 
φa = φb = φab = φba ), then we obtain model (1). 
Let us define the following matrices 

X ∗ β ∗ + G ∗ Aδa = a a abXbγab + �a, 

∗ β ∗ + G ∗ Bδb = Xb b baXaγba + �b, 

where A = (Xa, G
∗ Xb, �a), δa = (β∗, γab, 1), B = (Xb, G

∗ Xa, �b) and δb = (β∗, γba, 1). Byab a ba b 

plugging Yb in equation (2) we have 

Ya = φaGaYa + φabGab(Jb(φbaGbaYa + Bδb)) + Aδa (4) 

= (φaGa + φabφbaCa)Ya + φabGabJbBδb + Aδa, P∞where Jb = (I − φbGb)
−1 = k=1(φbGb)

k provided kφbGbk∞ < 1, where k·k∞ is the row-sum 
matrix norm. The ijth element of Jb sums all k-distance paths from j to i when i, j ∈ B 
scaling them by φk

b and Ca = GabJbGba. 
8 Therefore the reduced form of model (2) is 

Ya = Ma(φabGabJbBδb + Aδa), (5) 

)−1 9 where Ma = (I − φaGa − φabφbaCa . A sufficient condition for the non singularity of 
(I − φaGa − φabφbaCa) is kφaGak∞ + kφabφbaCak∞ ≤ 1. This condition also implies that Ma 

is uniformly bounded in absolute value.10 

We note that: (i) we present an aggregate model specification (i.e. G which multiplies y 
in model (1) is not row-normalized), but the approach applies also to an average model (i.e. 

07More formally, Ya = RaY , Xa = RaX, Ga = RaGRa and Gab = RaGRb 
0 , where Ra = (Ina , Ona,nb ) and 

Rb = (Onb,na , Inb ) are matrices that select the nodes in group a and b respectively. Ok,l is a k × l matrix of 
zeros. 

8Ca is a matrix which captures all the indirect connections among nodes of type A passing through one or 
more nodes of type B. Note that the ijth generic element of GabGba is equal to the number of length-2 paths 
directed from j ∈ A to i ∈ A passing through a node l ∈ B. This matrix accounts only for distance-2 indirect 
connections while Ca = GabJbGba captures all the paths starting from j ∈ A and ending to a generic node in 
B, eventually passing through other nodes of type B and finally arriving in i ∈ A scaling them by φb. 

9This matrix captures all direct and indirect paths among type A nodes passing through others type A 
nodes and type B nodes. 

10The assumption is crucial for identification of the model and asymptotic normality of the estimator (see 
Appendix A). 

5 
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when G which multiplies y in model (1) is row-normalized);11 (ii) our model specification has 
two groups, but all the assumptions, propositions and proofs can be naturally extended to a 
finite number of groups; (iii) we consider a single network, but the approach can be extended 
to the case of multiple networks(i.e. a network with several components) with the addition of 
network fixed effects in the model specification; (iv) we can also add a heterogeneous spatial 
lag in the error term �a = ρaWa�a + ρabWab�b. 12 

3 Identification 

Let us define Za = (GaYa, GabYb, X
∗, G∗ Xb). Equation (2) is identified if E(Za) has full a ab 

column rank for large n.13 In this section, we find sufficient conditions for E(Za) to have full 
column rank.14 The detailed proof is given in Appendix C. 

Proposition 1. Let Xa and Xb have full column rank. If the sequences of {Ma}, {Mb}, {Ja}
and {Ja} are UB matrices,15 then E(Za) has full column rank in the following cases 

1. [(I)] 

2. (a) i. βaφa + γa =6 0, 

ii. Ia, Ga and G2 a are linearly independent. 

[and] 

(b) i. βbφb + γb 6 0,= 

ii. Gab and GabGb are linearly independent. 

[or] 

=3. (a) i. γab 6 0, 

ii. Gab and GaGab are linearly independent. 

[and] 

(b) i. γba 6 0,= 

ii. Ia, Ga and GabGba are linearly independent. 

Note that conditions (2a) are exactly the same identification conditions found by Bramoullé 
et al. (2009) in the case of homogeneous effects (i.e. only one group). Proposition 1 here is 
more general as it provides alternative possibilities. When more than one group is considered 
we do not need linear independence of a particular set of matrices - we have multiple sufficient 
conditions. Even if Ia, Ga and G

2 
a are linearly dependent we can still identify φa, and the other 

11Aggregate and average models are different in terms of behavioral foundations, contextual effects are 
supposed to be averages over peers in both cases w.l.o.g. (see Liu, Patacchini, and Zenou, 2014forthcoming). 

12The resulting model is a SARARMAG(p; q; g) with p = 1, q = 1 and g = 2, where p and q are respectively 
the number of spatial lags for outcome and error, and g is the number of groups (see Kelejian and Prucha, 
2007). 

13This implies that Assumption 4 in Appendix A holds. 
14Symmetric conditions and results hold for equation (3). 
15In practice we need a series expansion to approximate the inversion of the matrices. We are grateful to 

Chihwa Kao for pointing it out. 
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Figure 1: Identification with heterogeneous nodes 

parameters, relying on linear independence of chains passing through type B nodes.16 The set 
of adjacency matrices’ combinations can be represented as a Tree-indexed Markov chain- the 
parameters can be identified because of the multiple branches of the tree (see Appendix B). 
Obviously, if Ga, Gba, Gab and Gb are complete and consequently all products among them are 
linearly dependent, then the model remains not identified. However, if group A nodes are in 
a complete network, but the matrices representing between-group interactions are sparse (i.e 
Gab and Gba are not complete), then identification can be achieved and φa can be estimated 
even if Ga is complete. Systems in panels (b) and (c) in Figure 1 can be identified because 
the adjacency matrix of type B nodes (blue nodes in Figure 1) is sparse, whereas systems in 
panel (a) and (d) cannot. The additional parameters’ restrictions (condition (2b, 3a or 3b)) 
are due to an additional vector in the full rank condition (i.e. E(Gabyb)). 
Proposition 1 has a natural interpretation in terms of instrumental variables. A multi-

ple group framework adds an extra layer of exclusion restrictions. In fact, multiple sets of 
matrices provide additional instruments. The intuition is that when we distinguish nodes in 
different types, a higher number of possible network intransitivities are formed. Appendix B 
provides technical details on the connection between identification in a single group model 
and a multiple group one. 

4 The 2SLS estimator 

Equation (2) cannot be consistently estimated by OLS because Gaya and Gabyb are correlated 
with �a. 17 We consider 2SLS estimation for the model in the spirit of Lee-Liu (2010). Following 
the standard technique used in spatial econometrics literature, we have the following optimal 
instruments from the two (symmetric) reduced forms 

E(Gaya) = Ga(Ma(φabGabJbE(B)δb + E(A)δa), (6) 

E(Gabyb) = Gab(Mb(φbaGbaJaE(A)δb + E(B)δa). (7) 

16For example, we can take advantage of linear independence of Ia, Ga and GabGba (instead of Ia, Ga and 
G2 

a); and Gab and GaGba. 
17From equation (5), Gaya = Sa(φabGabJbBδb +Aδa) where Sa = GaMa. OLS is not consistent because we 

have E((Gaya)
0, �a) = E((Sa(φabGabJbBδb +Aδa))

0, �a) = E((Sa�a)
0, �a), since we assume that the cov(�a, �b) = 

0 and E(�a) = E(�b) = 0. It follows that E((Sa�a)
0, �a) = σa 

2Tr(Sa) =6 0. A similar argument holds for Gabyb. 

7 
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Recalling that Za = [Gaya, Gabyb, E(A)] is a n × (k + 2) matrix, we have fa = E(Za) = 
[E(Gaya), E(Gabyb), E(A)], so from equations (6) - (7) we have 

Za = fa + va = fa + [(φabSaGabJb�b + Sa�a), (φbaSabGbaJa�a + Sab�b)][e1, e2]
0 , 

where e1 is a first unit vector of dimension (k + 2), Sa = GaMa and Sab = GabMb. These 
instruments are infeasible given the embedded unknown parameters. fa can be considered 
a linear combination of IVs in H∗ = (Sa(GabJbE(B), E(A)), Sab(GbaJaE(A), E(B)), E(A)).∞ 

Furthermore, since Sa = GaMa and Sab = GabMb provided kφaGak∞ + kφabφbaCak|∞ ≤ 1 and 
∞ ∞ ∞P P P 

kφbGbk∞ < 1, we have Sa = Ga (φaGa+φabφbaCa)
j = Ga (φaGa+φabφbaGab (φj Gb

j )Gba)
j .b

j=0 j=0 j=0 

The same approximation holds for Sab. It follows that 

∞ pX X 
j j j jCa = GabJbGba = Gab( φbGb)Gba = Gab( φbGb + (φbGb)

p+1Jb)Gba. 
j=0 j=0 

p 

This implies kCa − 
P 

φj
bG

j
bk∞ ≤ k(φbGb)

p+1k∞kCak∞ = o(1) as p →∞. 
j=0 

p∞ PP 
)p+1SaSa = GaMa = Ga (φaGa+φabφbaCa)

j = Ga[ (φaGa+φabφbaCa)
j +(φaGa+φabφbaCa ]→ 

j=0 j=0 
pP 

kSa − (φaGa + φabφbaCa)
j k∞ ≤ k(φaGa + φabφbao(1))

p+1k∞kSak∞ = o(1) as p →∞. Hence, 
j=0 

the approximation error by series expansion diminishes very quickly in a geometric rate, as 
long as the degree of approximation (p) increases as n increases. We can also replace Sa and 
Sab by a linear combination. The instruments become 

Ha 
∞ = (Ga(I,Ga, Ga 

2 , . . . (Gab(I,Gb, Gb 
2 , . . . )Gba)) . . . (Gab(I,Gb, Gb 

2 , . . . )E(B), E(A)), 

Hab 
∞ = (Gab(I,Gb, G

2 
b , . . . (Gba(I,Ga, Ga

2 , . . . )Gab)) . . . (Gba(I,Ga, Ga
2 , . . . )E(A), E(B)), 

with an approximation error diminishing very quickly when K (or p) goes to infinity, where K 
denotes the number of instruments. Let us define H∞ ∞, H

ab 
a as the matrix = [Ha 

∞ , X
∗, GabXb]

of instruments and select an na × K submatrix HK based on a p-order approximation of 
H∞. 

18 For instance, if we use the second order approximation of the infinite sums, HK = 
(H2 

a, H2 
ab, Xa 

∗, GabXb) will be the first step best projector. The feasible 2SLS estimator for 
model (2) is 

µ̂ = (Za 
0 P̂ K Za)

−1Za 
0 P̂ K Ya, (8) 

where ̂µ = (φa, φab, β
∗, γab) and P̂ K = HK (H

0 HK )
−1H 0 

a K K . 

4.1  Asymptotic  Properties  

This section derives the asymptotic properties of the many-instrument 2SLS estimator for 
heterogeneous network models. Cohen-Cole et al. (2012) and Liu (2013b) consider a network 
model with two endogenous variables and one adjacency matrix with multiple networks.19 Our 

18Note that K is a function of the degree of approximations p. 
19Kelejian and Prucha (2004) considers SAR models with multiple endogenous variables and a unique weights 

matrix. 
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network model requires two endogenous variables, and two different adjacency matrices.20 In 
Lee and Liu (2010) and Liu (2013b), the asymptotic approximation of the 2SLS estimator is 
based on many-instrument asymptotics, where the many instruments derive from the multiple 
network framework. In our model the many instruments derive from the (approximation 
of the) multiple adjacency-matrix framework. A multiple matrix framework results in an 
increasing number of instruments due to multiple approximations of the optimal instruments.21 

This complicates the derivations of the asymptotic properties of the many-instrument 2SLS 
estimator. 
The following propositions establish the consistency and asymptotic normality of the many-

instrument 2SLS estimator in equation (8). Regularity conditions together with some discus-
sion can be found in Appendix A. Some useful Lemmas are provided in Appendix B. All the 
proofs are listed in Appendix C. Let 

Fa = lim 
1 
fa 
0 fa, 22 

n→∞ n 

PK Sa = Ψa and PK Tba = Ξba, where Tab = SabGbaJb. 23 

√ 
Proposition 2. Under assumptions 1-5, if K/n → 0, then n(µ̂ − µ0 − b) 

N(0, σa 
2Fa 

−1), where b = (Za 
0 PK Za)

−1[e1, e2]σa 
2[tr(Ψa), φbatr(Ξba)]

0 = Op(K/n). 

From Proposition 2, when the number of instruments K grows at a slower rate than 
the sample size n, the 2SLS estimator is consistent and asymptotically normal. However, the 
asymptotic distribution of the 2SLS estimator may not be centered around the true parameter 
value due to the presence of many-instrument bias of order Op(K/n) (see, e.g., Lee and Liu, 
2010). We note that the leading order of the bias is the same as in Lee and Liu (2010) 
and Liu (2013b). However, the structure of the bias differs. Here, it depends on multiple 
approximations of the optimal instruments (see the beginning of Section 4). The condition 
that K/n → 0 is crucial for the 2SLS estimator to be consistent. This appears evident if 
we look at the normal equation of our estimator: 

n 
1Za 

0 PK (Ya − Zaµ̂). When ̂µ = µ0 we have 
that E(

n 
1Za 

0 PK (Ya − Zaµ0)) = [e1, e1]σa 
2[tr(Ψa), φbatr(Ξba)]

0 = Op(K/n) by Lemma B.2 in the 
Appendix. This converges to 0 only if the number of instruments grows more slowly than the 

¯ )−1 ¯sample size.24 N(0,σa 
2(limn→∞ n 

1fa 
0 Pfa . Note that (Fa − limn→∞ n 

1fa 
0 Pfa) = limn→∞ fa 

0 (I − 
P̄ )fa, which is positive semi-definite in general. The 2SLS estimator with fixed number of 
instrument is generally not efficient. In order to have efficiency, we need to index our matrix 
of instruments with K and let K grow more slowly than the sample size. The following corollary 
characterizes different scenarios for different rates in which K diverges from n. 

√ 
Corollary 1. Under assumptions 1-5, (i) if K2/n → 0, n(µ̂ − µ0) 

√ 
N(0, σa 

2Fa 
−1); (ii) if K2/n → c < ∞, n(µ̂ − µ0) 

N(, σa 
2Fa 

−1), where b̄ = lim 
√ 
nb. 

n→∞ 

20We consider the analysis with one network only. The extension to multiple networks extremely complicates 
the notation burden, but the theoretical results remain basically unchanged. 

21See Section 4. 
22This is a crucial assumption. See the discussion in Appendix A after Assumption 4. 
23To simplify the notation, we assume that n →∞ implies na →∞ and nb →∞. √¯24Indeed, if we use a fixed number of instruments given by H, the asymptotic distribution will be n(µ̂−µ0) 
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The many-instrument bias of the 2SLS estimator can be corrected by the estimated leading-
ˆ ˆ ˆ ˆorder bias (b) given in Proposition 2. Given consistent estimates of φa, φb, φab, φba, σ̂a and ̂σb, 

the bias-corrected 2SLS estimator is 

µ̂c = (Za 
0 PK Za)

−1[Za 
0 PK Ya − σ̂a 

2[e1, e2][tr(Ψa), φ̂ ba(Ξba)]
0]. (9) 

The following proposition shows that the bias-corrected estimator is properly centered around 
the normal distribution. 

ˆ ˆ ˆ ˆProposition 3. Under assumptions 1-5, if K/n → 0 and φa, φb, φab, φba, σ̂a and σ̂b are √ √ 
n−consistent initial estimators, then n(µ̂c − µ0) 

N(0,σa 
2Fa 

−1) . 

In the next subsection we discuss the case in which the number of endogenous variables 
(groups) grows with the sample size. 

4.2  Estimation  with  Many  Groups  

So far, we have assumed that group numerosity does not depend on the sample size. We 
believe that, in practice, such an assumption is virtually always satisfied. For instance, if we 
increase the size of the sample, we will always have two genders: male and female. However, 
for completeness it is interesting to explore whether having the number of groups growing 
together with the sample size affects the estimator properties. 
In the many-instrument literature, Anatolyev (2013) and Imbens, Kolesar, et al. (2011) 

have relaxed the assumption of a fixed number of exogenous regressors. To the best of our 
knowledge, the implications of relaxing the assumption of a fixed number of endogenous re-
gressors have not been investigated yet. 
Let us define g as the number of endogeneous variables and p as the degree of approximation 

(see Appendix C for an intuition of p as length of chains). 
The following proposition characterizes the rate of divergence of g from n. 

1/p).Proposition 4. if K/n → 0, we have that g = o(n 

This means, that for our estimator to be consistent and asymptotically normal in this 
framework with many instruments and many endogenous variables we need g to grow more 

1/pslowly than n . 
For completeness, let us consider the link between the number of groups (i.e. endogenous 

variables) and the many-instrument asymptotics. 
In our framework we have that g/K → 0. In order to have a good performance of the 

estimator we need K/n → 0. This implies g/n = 1/sg → 0, where sg is the average size 
of groups. In words, in order to have a good performance of the estimators, we need the 
size of groups to be large enough. Furthermore, in order to have the estimator properly 
centered, we need K2/n → 0. This implies g2/n = g/sg → 0. Therefore, for asymptotic 
efficiency, the average size of groups needs to be large enough compared to the number of 
groups. These results are similar to those in Lee and Liu (2010). However, the framework 
in Lee and Liu (2010) considers multiple networks embedded in a block-diagonal adjacency 
matrix (i.e. G = diag(Ga, Gb)) with the restriction that the within peer effects are the same 
for each network, (i.e. φa = φb) and there are no interactions between networks . If a network 
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is defined as a group, then our framework can be considered as a generalization. We have 
different groups, with both within and between-group interactions. Our adjacency matrix is 
thus not block-diagonal. 

4.3  Finite  sample  performance  

In this section, we use simulation experiments to investigate the performance of the proposed 
estimator in small samples. 
We conduct a Monte Carlo simulation study based on the following model 

ya = φaGaya + φabGabyb + Xa 
∗ βa + G ∗ 

abXbγab + �a, 

yb = φbGbyb + φbaGbaya + X ∗ βb + G ∗ Xaγba + �b,b ba 

where Xa, Xb and � ∼ N(0, 1). Borrowing from Lee and Liu (2010), we generate the G matrix 
as follows. First, for the ith row of G, we generate an integer di ∈ [0, 1, .., m] with a uniform 
probability function, where m = 10, 20, 30. Then we set the (i + 1)th, · · · , (i + di)th elements 
of the ith row of G to be ones. If (i + di)th < na, the other elements in that row are zeros; 
otherwise, the entries of ones will be wrapped around such that the number of di − na entries 
of the ith row will be ones. We partition the matrix into four submatrices Ga, Gb, Gab and 
Gba with a random selection of rows and correspondent columns. The identifier variable used 
to select the two groups is generated by a Bernoulli distribution with p=0.5. The number of 
replications is 1000 and na = nb = 500. We perform two experiments that are summarized 
in Table 1 and Table 2. Each column reports mean and standard error (in parenthesis) of 
the empirical distributions of different estimators. The first column shows 2SLS few IVs. It 
is based on equation (8) with the IV matrix HK derived by the first order approximation of 
the best instruments (K=24). The second column reports the 2SLS many IVs, it is derived 
by the second order approximation of the best instruments (K=84). Finally, Column 3 shows 
the 2SLS bias-corrected. It is based on equation (9) with consistent estimates derived from 
the 2SLS few IVs. 
Table 1 reports on the performance of the estimators when changing the density of the 

network, i.e. the number of connections. Each panel represents a different value of m, which 
indicates the maximum number of connections. The data are generated with βa = βb = 
γa = γb = γab = γba = 0.5. The peer effects parameters are set to: φa = φb = 0.1 and 
φab = φba = 0.2. The results show that all estimators perform well, with different nuances. 
In particular, one can observe the trade-off between bias and efficiency for the 2SLS many 
IVs when network density increases- the higher the density, the higher the gain in terms of 
efficiency with respect to the 2SLS few IVs. However, the bias (due to the many instruments) 
increases as well. The bias correction that we propose is thus particularly beneficial when the 
network is dense. 

[INSERT TABLE 1HERE] 

Table 2 reports on the performance of the estimators when changing the heterogeneity 
within and between-group parameters. The simulation setup remains unchanged, but we now 
set the maximum number of connections to 20 and let the φ parameters vary. In the first 
panel, we consider φa = φab = φb = φba = 0.1 This is the benchmark framework in which 
peer effects are homogeneous. In the second panel, we introduce some heterogeneity in the 
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within-group interaction effects. We set φa = φb = 0.1 and φab = φba = 0.3. In the third panel, 
peer effects are different both within and between groups. We set φa = 0.1, φb = 0.2 φab = 0.4 
and φba = 0.05. Table 2 shows that the performance of the estimators does not depend on the 
values of the parameters- the ranking of the estimators in terms of efficiency and bias remains 
unchanged. 

[INSERT TABLE 2HERE] 

To test the robustness of our results, we have also performed two additional exercises.25 

First, instead of using randomly generated networks, we have used the Add Health’s socioma-
trix26 as an adjacency matrix, thus replicating features of real-world social networks. Our 
aim is to understand whether the results of Table 1 are driven by the random generation of 
links. Second, we use uniform and gamma distributions to generate the errors of the data 
generating process. In doing so, our aim is to investigate whether and to what extent our i.i.d. 
assumption for the error terms in the derivation of large sample properties affects the finite 
sample Monte Carlo results. In both cases, the simulation results are very similar to those 
reported here. 

5  Model  Misspecification  Bias  

In this section, we investigate the bias occurring when the interaction structure is misspecified. 
First, we analytically derive the bias that occurs when only within-group peer effects are 

considered, i.e. when interactions between groups are at work but ignored by the econometri-
cian. We then use a simulation experiment to evaluate this bias in finite samples. 
Second, we derive the mapping between the parameters of a model with homogeneous 

peer effects and those of a model with heterogeneous peer effects. We then use a simulation 
experiment to give an example of parameter mapping when peer effects are believed to be 
homogeneous but are actually heterogeneous in the data generating process (DGP). 
Let us suppose the econometrician estimates the following model 

ya = (I − φaGa)
−1(Xaβa + Ga 

∗ Xaγa + �), (10) 

whereas the real DGP is 

ya = Ga(Ma(φabGabJbBδb + Aδa), (11) 

yb = Gab(Mb(φbaGbaJaAδb + Bδa). (12) 

25Results available upon request. 
26A matrix derived from observed connections among students in the Add Health, a program project directed 

by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at 
the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy 
Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other 
federal agencies and foundations. Special acknowledgment is due to Ronald R. Rindfuss and Barbara Entwisle 
for assistance in the original design. Information on how to obtain the Add Health data files is available 
on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant 
P01-HD31921 for this analysis. 
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This model misspecification results in an estimator of the endogenous effect φa that is incon-
sistent. First, we are omitting the influence of the outcome of type B agents. Second, we 
do not consider the indirect connections among type A nodes passing through type B nodes. 
As a result, Gk

a, with k ≥ 2, is misspecified. Therefore, the commonly used instrument G2 a 

might not be valid as the exclusion restrictions might be violated. Third, we misspecify the 
contextual effects (G∗ 

aXa) by ignoring the characteristics of other-type peers. 
27 

Analytically, the bias is 

E( ˆ )µa = µa + E(Za 
0 PaZa)

−1ZaPa(φabGabyb + G ∗ 
abXbγab), 

where Za = [Gaya, Xa, Ga
∗Xa] and µa = (φa, βa, γa). The bias is positively correlated with the 

direct influence of type B on type A, as captured by the peer effects from B to A and the 
influence of the characteristics of type B on type A. 
Table 3 shows the extent of this bias in finite samples through a Monte Carlo simulation. 

Table 3 represents the performance of the 2SLS few IVs following the same experiment design 
as in the previous section.28 We report on the case in which the maximum number of connec-
tions is 10 for each node (as in panel 2 of table 1).29 The first column reports the real value 
of the parameters. The second column shows the performance of the 2SLS estimator in the 
misspecified model. When interactions between groups are at work but ignored by the econo-
metrician it results in the size of the bias derived above. The third column shows the results of 
the estimator when the econometrician considers the correct DGP (equations (11) and (12)), 
but does not use the approximation of optimal instruments (in equation (8)). In other words, 
we consider the case where the traditional network IV approach is applied mechanically, thus 
G2aXa and GabGbXb are used as instruments respectively for GaYa and GabYb. In short, only 
within-group instruments are considered. The resulting 2SLS estimator is consistent but not 
efficient. The fourth column reports the performance of our 2SLS few IVs (in equation (8)), 
which considers the Hk matrix derived in Section 4(i.e which also includes between group 
instruments).30 Mean values for each coefficient’s empirical distribution and standard errors 
(in parenthesis) are reported. 
Table 3 shows that the bias is large in the second column, especially for the β coefficients. 

In the second column the bias is not large, but the problem is efficiency. Our approach (third 
column) reveals no bias and improved efficiency. 

[INSERT TABLE 3HERE] 

In our second exercise, we consider the case in which the econometrician estimates a 
standard network model (model (1)) when the real DGP is characterized by heterogeneous 
peer effects (model (11) - (12)). 
Let us define the following n × n matrices 

27This issue also arises when full information about node characteristics and network structure is not avail-
able. See Chandrasekhar and Lewis, 2011, Liu, Patacchini, and Rainone, 2013 and Liu, 2013a for problems 
related to the use of sampled network data. 

28We use the 2SLS few IVs to ease the comparison of 2SLS estimators with the misspecified set of instruments. 
Observe that the bias considered here is due to the misspecification of the model rather than to the many-
instrument issue. 

29The simulation results in the other cases, i.e. when the maximun number of simulations is 20 or 30, are 
very similar. 

30First order approximation of optimal instruments is considered. 
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� � � � 
Ga Oab Oa GabG(a) = , G(ab) = ,
Oba Ob Oba Ob � � � � 
Oa Oab Oa OabG(ba) = , G(b) = ,
Gba Ob Oba Gb 

where Ol is a l × l matrix of zeros and Olk is a l × k matrix of zeros. Let us suppose for 
simplicity that β = βa = βb and γ = γa = γab = γba = γb and focus our attention on the peer 
effects parameters. In this case model (1) can be written as 

Y = φGY + Xβ + G ∗ Xγ + � (13) 

= (φaG(a) + φabG(ab) + φbaG(ba) + φbG(b))Y + Xβ + G ∗ Xγ + �. 

Hence, the peer effects parameter, φ, is the following non-linear function of heterogeneous peer 
effects 

φ = φaG
−1G(a) + φabG

−1G(ab) + φbaG
−1G(ba) + φbG

−1G(b). 

If φa = φb = φab = φba = φ, then 

φaG(a) + φabG(ab) + φbaG(ba) + φbG(b) = φ(G(a) +G(ab) +G(ba) +G(b)) = φG. 

Table 4 contains the results of a simulation experiment in which we estimate model (13), for 
different values of φa, φb, φab and φba. The simulation set-up is as before- the data generating 
process remains as in equations (11) and (12)). The estimator considered is the 2SLS few IVs. 
In the first column, we set all the φ parameters equal to 0.1. In fact, the 2SLS few 

IVs consistently estimates φ = φa = φb = φab = φba. In the second column, we add some 
heterogeneity. We set φab = 0.3 and φba = 0.3, leaving the other parameters unchanged. The 
third column corresponds to the case in which all the φ parameters are different. As expected, 
as soon as some heterogeneity is introduced, the estimated value of φ is not informative at all. 

[INSERT TABLE 4HERE] 

6  Impact  Evaluation  and  Treatment  Effect  

Let us now highlight the importance of our analysis for the identification of treatment response 
with spillovers. Let A be the set of eligible recipients and B the set of ineligible recipients of 
a treatment (respectively eligibles and ineligibles hereafter). The treatment is administrated 
using a randomized controlled experiment. Having in mind policy interventions such as condi-
tional cash transfer or microfinance subsidies can be useful. Let Ta be the binary treatment 
vector whose ith element is Ta,i = {0, 1}, which indicates whether i is treated or not (among 
the eligibles).31 Model (2) and (3) can be written as 

∗∗ β + G ∗ Ya = φaGaYa + φabGabYb + Xa a + δaTa + ρaGaTa abXbγab + �a, (14) 

31Our analysis can be easily adapted to the case of continuous or multinomial treatment. It is also useful 
to recall an assumption already listed in the previous sections for estimator properties, G ⊥ Ta, which here 
states that the treatment does not change the network topology. This assumption relates to Manski (2013) 
which assumes that reference groups are person-specific and treatment-invariant (unable to be manipulated 
by the policy maker). 
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Yb = φbGbYb + φbaGbaYa + Xb 
∗ βb 
∗ + G ∗ 

baXaγba + GbaTaρba + �b. (15) 

In this model, the Stable Unit Treatment Value Assumption (SUTVA)32 doesn’t hold because 
(i) spillovers are at work and (ii) spillovers are heterogeneous. To the best of our knowledge, 
there are no studies that consider violations of the SUTVA because of (ii). This is surprising 
given that heterogeneity in spillovers is naturally implied by differences between eligibles and 
ineligibles. 
Our results in Sections 4 provide consistent and efficient estimators for the parameters of 

model (2) - (3).33 

6.1  Average  Treatment  Effect  with  Heterogeneous  Spillovers  

The Average Treatment Effect in our context can be written as34 

AT E = E(Yi|i ∈ A, Ta,i = 1, X, G)− E(Yi|i ∈ A, Ta,i = 0, X, G). (16) 

From the reduced form of equation (14) 

AT E = δaEET (ma,ii), (17) 

where ma,ii is the iith element of Ma and EET (·) = E(·|i ∈ A, Ta,i = 1, X, G) indicates the 
expected value over the treated eligibles. The Average Treatment Effect is thus equal to the 
direct impact of the treatment on the individual i (i.e. δa) plus the indirect effect of other 
agents’ spillovers on i triggered by i’s treatment (but not triggered by other nodes’ treatment) 

∞X 
δaMa = δaIa + δa (φaGa + φabφbaCa)

k . 
k=1 

Observe that ma,ii is a function of (Ga, Gb, Gab, Gba, φa, φb, φab, φba). This implies that when 
network interactions are at work, the AT E depends on network topology and strength of 
outcome spillovers among agents. As a result, an individual can have a high increase in 
outcome even if she has a low treatment direct impact (a low δa) but she is central in the 
network.35 Observe that even if δa,i = δa( i.e. the treatment effect is homogenous) the AT E 
can be heterogeneous because of the different position of nodes in the network. Indeed, the 
AT E can be decomposed into two parts 

AT E = δa + δaEET [(diag(Ma − Ia)] . (18)|{z} | {z }
DTE FLTE 

32Following Rubin (1986), SUTVA states that potential outcomes depend on the treatment received, and 
not on what treatments other units receive and that there are no ”hidden treatments”. 

33As mentioned in the Introduction, we do not consider direct treatment effect heterogeneity. This assump-
tion can be relaxed, allowing for a double form of heterogeneity: one coming from individual characteristics, 
the other from the interactions. The identification becomes much more complex. We leave this extension for 
future research. Following Manski (2013), we also assume here that the treatment does not change the network 
topology, i.e. that the policy maker cannot manipulate reference groups. 

34When the treatment is a randomized control experiment, the average treatment effect is equal to the 
average treatment effect on treated. 

35Of course the centrality itself is not a sufficient condition, a high level of spillovers is required. 
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The first part is the Direct Treatment Effect (hereafter DT E), whereas the second part is the 
effect of the treatment due to the interactions among agents, i.e. the effect of i’s treatment 
that impact i through other nodes. We denote the latter effect as Feedback Loop Treatment 
Effect (hereafter F LT E). The sample counterpart of equation (18) is X 

ˆ = µ 0 t[δ̂  adiag(M̂ a)]µt 
1
= δ̂  a 

1 
a,ii,ATE mˆ (19) 

nt nt 
a a i∈NT 

a 

where NT is the set of treated individuals which has cardinality nt < na, µt is the n
t × 1a a a 

selector vector for that units and M̂ a = Ma(φ̂ a, φ̂ b, φ̂  ab, φ̂  ba) is the estimated counterpart of 
Ma. 

Treatment Effect Misinterpretation and Bias When SUTVA holds, AT E = DT E. 
If interferences are at work, then AT E =6 DT E. However, the problem is not only about 
interpretation. We show below that if spillovers are ignored, then the parameter estimates 
can be inconsistent. Suppose that a treatment is administered to nt

a < na subjects and we 
ignore interactions among them. Estimation of δa is based on the following regression 

Ya = Xaβa + Taδa + �a 
∗ , (20) 

where �a 
∗ = ρaGaTa +φaGaYa +φabGabYb + �a contains the three relevant spillover effects omit-

ted:36 (i) the direct treatment spillover from other eligibles ρaGaTa, (ii)the endogenous out-
come spillover from other treated eligibles φaGaYa and (iii) the endogenous outcome spillover 
from ineligibles φabGabYb. Misinterpretation occurs because the estimate of δa is interpreted 
as a DT E while, if the data generating process is given by equations (14) and (15), it is an 
AT E. Bias can occur if the treatment is correlated with the three components listed above 

δ̂  a = δa + bias = δa + (T 0 Ta)
−1Ta { ρaGaTaa 

+ φaGaMa[φabGabJb(ρbaGbaTa) + Taδa + ρaGaTa] 

+ φabGabMb[φbaGbaJa(δaTa + ρaGaTa) + ρbaGbaTa]}. 

The bias is due to the spillover effects coming from the three omitted components listed 
before. By correctly specifying the interaction structure we can consistently estimate the 
direct treatment effect purged of the influence of the three omitted components. 
It should appear clear from our discussion that, if the spillovers’ coefficients and the direct 

treatment effect are positive, neglecting between and within-group interactions result in an 
overestimation of the direct treatment effect. Manski (2013) defines this scenario as Rein-
forcing Interactions. Of course one can imagine different scenarios where interactions are not 
reinforcing and, on the contrary, are Opposing Interactions. 
Our approach has an advantage from this point of view- it allows interactions between 

and within groups to be heterogeneous (e.g. Reinforcing Interactions within groups members 
and Opposing Interactions between groups). We also note that, using again Manski (2013)’s 
terminology, our framework can be adapted to the estimation of social interaction with leaders 
and followers, labeling those agents as groups A and B. 

36The other omitted terms, X∗β∗ and G∗ Xbγab, are independent from the treatment. a a ab 
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6.2  Indirect  Treatment  Effect  

As mentioned before, the Indirect Treatment Effect (hereafter ITE) has been an object of 
interest in several papers. Most of the existing papers focus attention on the indirect effect 
on ineligibles (see, e.g. Angelucci and De Giorgi, 2009). However, when the population is 
split into two sets, it is also natural and interesting from a policy perspective to understand 
whether different types of untreated (eligible or ineligible), are differently impacted by the 
treatment. Let us define IT EE and IT EI as the Indirect Treatment Effect on Eligibles and 
the Indirect Treatment Effect on Ineligibles, respectively. 
The Indirect Treatment Effect on Eligibles in our model is 

IT EE = E(Yi|i ∈ A, MiT 6 0∩ Ta,i = 0, X, G)− E(Yi|i ∈ A, MiT = 0∩ Ta,i = 0, X, G),= (21) 

whereas the Indirect Treatment Effect on Ineligibles can be defined as 

IT EI = 6 0, X, G)− E(Yi|i ∈ B, MiT 0, X, G),E(Yi|i ∈ B, MiT = = (22) �� � � ��−1 
Ia Gaφa Gabφabwhere Mi is the ith row of M = − , T = [Ta, 0b], and 0b is a Ib Gbaφba Gbφb 

nb ×1 vector of zeros. MiT = 0 indicates that i is not affected by any of the treated nodes (i.e. 
that there are no direct and indirect paths in the networks between i and a treated node). 
Let us now suppose that, given our data generating process (equations (14) and (15)) 

we are asked by a policy maker to evaluate the Indirect Treatment Effects after a treatment 
administered to the eligibles (i.e. to a subset of A). From model (14) - (15) we can derive the 
following formulas 

IT EE = EEu [Mai (φabGabJb(ρbaGbaTa) + δaTa + ρaGaTa)], 

IT EI = EI [Mbi (φbaGbaJa(δaTa + ρaGaTa) + ρbaGbaTa)], 

where Mai is the ith row of Ma, Mbi is the ith row of Mb , EI (·) = EI (·|i ∈ B, MiT =6 0, X, G) 
indicates the expected value over the (indirectly treated) ineligibles, and EEu (·) = E(·|i ∈ 
A, MiT 6 0 ∩ Ta,i = 0, X, G) indicates the expected value over (indirectly treated) untreated = 
eligibles. Observe that these estimands depend on direct and indirect connections because 
of network-based spillovers. More formally, they can be decomposed into different parts. 
For instance, IT EE may be decomposed into three effects. The first term , δaMa, captures 
propagation of the treatment via outcome spillovers.37 . 
The nice feature of this derivation of IT EI and IT EE is that instead of simply addressing 

the question whether an ITE is different from zero, we can also decompose it into different 
sources of treatment’s transmission. For instance, one can find that the treated population 

37Given that Ma = (I −φaG−φabφbaCa)
−1, we have Maδa = Iaδa +[(Ia −φaG−φabφbaCa)

−1 −I]δa. The first 
term is the diagonal matrix of treatment direct effects which has (by definition) no impact on the untreated, 
while the second term represents the propagation of those effects through the network via endogenous spillovers 
(i.e. changes in outcomes due to treatment). The second term, ρaMaGa, measures the spillover arising from 
the treatment given to other units (ρaGa), as well as its amplification through interactions (as captured by 
Ma). Finally, φabρbaMaGabJbGba, denotes the spillover accruing to ineligibles distinguished between outcome 
amplification (MaGabJb) and (indirect) treatment effect (ρbaGba). A similar decomposition can be applied to 
IT EI 
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has a strong reaction to the treatment (δa and ρa are high) and transmits it to ineligibles 
through low magnitude peer effects (φab is low). The same level of IT EI, however, can also 
arise from a scenario where there is a low reaction to the treatment within group (δa and ρa 

are low) and a large transmission between groups (φab is high). 
Understanding these different channels is paramount for policy purposes. Most impor-

tantly, our framework enables the researcher to distinguish the role of contextual effects from 
peer effects in transmitting the treatment. In other words, one can quantify how much of 
the effect is generated by the direct effect of the treatment through exogenous variables (as 
captured by δa, ρa and ρba) and how much is due to spillovers through outcomes (as captured 
by φba, φa, φb and φab). Note also that having these estimates at hand, one can understand 
which effects (within eligibles, within ineligibles and between them) are the dominant ones in 
spreading out the policy’s beneficial effect. 
We can thus simply use the sample counterpart to estimate the IT EE and IT EI 

1ˆ 0 ˆ ˆ ˆ ˆIT EE = µu[Ma(φabGabJb(Gbaγ̂ba) + βa + Gaγ̂a)]µu , 
nu
a 

ˆ ˆ ˆ ˆIT EI = ιb 
0 [Mb(φ̂  baGbaJa(βa + Gaγ̂a) +Gbaγ̂ba)]ιa 

1 
, 

nb 

where na
u < na is the number of eligibles who are untreated, µu is the na × 1 selector vector 

for that units and ιl is an nl × 1 vector of ones. 

6.3  Total  Treatment  Effect  

One can also be interested in evaluating the treatment effect on the entire population (or 
network). As the SUTVA has been removed and spillovers are in place, it is useful to derive 
the Total Treatment effect (hereafter TTE). Following our previous notation we have the 
following definition for TTE 

TTE = E(Yi|i ∈ A ∪ B, MiT =6 0, X, G)− E(Yi|i ∈ A ∪ B, MiT = 0, X, G). 

This represents the treatment effect on a generic individual in the network (eligible or ineligi-
ble). Its sample counterpart is 

�� � � ��−1 � � � � � � �� 
Ia Gaφ̂ a Gabφ̂  ab Ta Gaρ̂a Gab Ta 1 

TTEˆ = ι0 − δ̂ + ι ,
Ib Gbaφ̂  ba Gbφ̂ b

a Ob Gbaρ̂ba Gb Ob n 

ˆwhere ι is an n × 1 vector of ones. Note that the TTE is basically the weighted average of 
ˆ ˆ ˆAT E, IT EE, and IT EI. 

6.4  Control  Group  

It is well-known that the AT E, IT EE, IT EI and TTE are identified if we have a control 
group, i.e. if we can distinguish sample of units who are not treated (directly or indirectly). 
This can be quite challenging when estimating the indirect treatment effects. In a network 
context, we have two possibilities: (i) a multiple network-based approach and (ii) topology-
driven approach. 
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Figure 2: Topology-driven policy evaluation design 

In the first case, we have multiple networks, some of which are randomly treated and others 
which are not- offering a valid control group. A similar scheme is often followed for policy 
design and evaluation in a non-network context.38 

The second possibility is unique to a network approach and exploits the architecture of 
networks. When information on actual connections is available and the direction is known, 
it may be possible to estimate AT E, IT EE, IT EI and TTE using only one network. The 
network topology determines the possibility of having the control population if there are some 
nodes in the network that are not influenced by a treatment to other nodes. For example, 
let us consider the network in Figure 2, where the red nodes are treated and the blue ones 
are not. According to the directions of the edges (arrows in the picture), the blue node i 
is influenced by red nodes whereas the blue node j is not. Therefore, the direction of the 
links between nodes stemming from this network topology allows us to distinguish between 
indirectly treated nodes (node i) and control group nodes (node j).39 

6.5  Policy  Experiments  

Manski (2013) studies treatment response in settings with endogenous effects. In this frame-
work, endogenous effects are seen as a mechanism in which the treatments could propagate.40 

The main objects of interest are P [Y ] and P [Y (Ta)], the outcome distributions respectively 
without and with a treatment Ta administered to the population. Policy makers are usually 
interested in comparing these two distributions since interventions are often finalized to reduce 
inequality between a disadvantaged cluster and the rest of the population. The marginal effect 
of T on Y accounts for the adjustment of the outcome after a policy intervention. 
In this paper, we consider a network framework with heterogeneous peer effects similar 

to Manski (2013).41 In this section, we numerically study the empirical density functions 
P [Ya]− P [Ya(Ta)] and P [Yb]− P [Yb(Ta)], where the subscripts indicate the reference to eligible 
and ineligible populations. 
We perform a numerical simulation to asses the extent to which the underlining hetero-

geneity of the endogenous effects can affect the outcome response for different groups. Our 
goal is to provide evidence about the individual and aggregate implications of this heterogene-
ity. In the simulation experiment below, we show that for some values of φa, φb, φba and φab it 

38For example, in PROGRESA, a set of treated and untreated villages are surveyed (see Angelucci and De 
Giorgi (2009) for more details on the program design). 

39Note also that we need these two kinds of nodes to be comparable in terms of characteristics. 
40If a dynamic model is at work, then a social multiplier may also arise in terms of expectations. 
41The framework in Manski (2013) considers only one group, thus homogeneous peer effects (and no between 

group interactions). 
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may be (paradoxically) more convenient to treat a group other than the target one. This has 
implications for the study of socio-economic inequality. Importantly, by allowing estimation 
of all the different parameters of interest, our model specification can be used to understand 
what nodes (or which type of nodes) should be targeted by a social planner whose final goal 
is to maximize an aggregate outcome or to converge to a desired distribution of individual 
outcomes. 
We present an experiment where we treat a random sample of nodes and simulate the 

treatment’s propagation through a network characterized by heterogeneous peer effects. More 
specifically, we look at the increase of type A and type B nodes’outcomes once a certain set 
of nodes receives a treatment42 . 
Two exercises are implemented. In the first, we evaluate aggregate effects, i.e. the change 

in the sum of outcomes (for both type A and type B individuals) which follows a treatment 
for different values of peer effects (i.e. φa, φb, φba, φab). In the second exercise, we look at 
distributional effects, i.e. at changes in the empirical distribution of individual node outcomes 
for different sets of peer effects parameters following the policy intervention . 
Figures 5 and 6 report on the first exercise. Figure 5 depicts the results when fixing φb = 

φba = 0.1 and varying φa and φab. We generate a grid of values for parameters resulting from 
two sequences: φa = 0.02, 0.04, ..., 0.50 and φab = 0.02, 0.04, ..., 0.50. For each couple (φa, φab) 
we generate one hundred independent replications using the same DGP as described in SectionP P 
4.3 and compute Y s = yi and Y s = yi. We then select a random sample of one a i∈A b i∈B 
hundred type A nodes to be treated. This treatment is represented by an na × 1 vector Ta ofP 
zeros for non treated nodes and ones for treated nodes. Finally, we compute Y s∗ = y ∗ 

a i∈A iP ∗ ∗ ∂yiand Y s∗ = y , where y = yi + TA. This exercise represents the case where group A b i∈B i i ∂Ta 

nodes are treated and there are low interactions between nodes A and nodes B (φba = 0.1). 
From equations (14) and (15) we have n 

∗ ∂yi Mai (φabGabJb(ρbaGbaTa) + (δa + Gaρa)Ta) if i ∈ AΔyi = y − yi = Ta = .i Mbi (φbaGbaJa(δa + ρaGa)Ta + ρbaGbaTa) if i ∈ B∂Ta P 
Y s∗ − Y s ∂Ya Y s∗ − Y sFigure 5 represents the differences ΔY s = = Ta and ΔY s = = a a a ∂Ta b b bP ∂Yb Ta∂Ta 

for all the possible combinations (φa, φab).
43 

Figure 5 shows that ΔYa
s increases steadily with φa (and slightly with φab), whereas ΔYb

s 

remains roughly unchanged. These results are not surprising. If there are no interactions (or 
low interactions) between the two groups, then there is no reason why the outcome of group 

42We compute the marginal effect matrix of Ta on Ya multiplied by the treatment vector 

∂E(Ya|G, X)
Ta = Ma(φabGabJb(ρbaGbaTa) + δaTa + ρaGaTa). 

∂Ta 

Note that when there are no interactions between the two groups (or only type A nodes are considered in the 
∂E(Ya|G,X)analysis), we have Ta = Sa(δaTa + ρaGaTa), where Sa = (I − φa)

−1 . This is the marginal effect ∂Ta 

matrix in a standard peer effects model. 
The marginal effect matrix of Ta on Yb is 

∂E(Yb|G, X)
Ta = Mb(φbaGbaJa(δaTa + ρaGaTa) + ρbaGbaTa). (23)

∂Ta 

Observe that the marginal effect of Ta on Ya is different from the marginal effect of Ta on Yb -an increase in 
Ta differently affects nodes depending on their type. 

43Some combinations are missing in the grid because it is unlikely to draw Ga and Gab such that kφaGak∞ + 
kφabφbaCak|∞ ≤ 1. These combinations are at the edge of the parameter space. 
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B should change. The variation in the outcome of the group A depends on the extent of the 
endogenous effects (φa). If instead there are interactions between the two groups, then the 
treatment response depends on both φa and φab. For example, assuming a positive effect of 
the independent variable, if a policy intervention targets a group when the two groups have 
the same outcome profile, we expect an increase in inequality in terms of outcomes between 
the two types when the within-peer effects (φa) are high and the between-peer effects (φab) 
are low. 

[INSERT FIGURE 5HERE] 

Figure 6 depicts the results when fixing φb = φab = 0.1, and varying φa and φba. The 
experiment design remains unchanged. This exercise represents the case where group A nodes 
are treated and there are increasing influences within nodes A and from nodes A and nodes B 
(φba increasing up to 0.5). Figure 6 shows that an increase of φba is beneficial for ΔYb

s, as type B 
nodes receive an impulse from type A nodes. Interestingly, type B nodes may actually benefit 
even more than A nodes (the treated group). Our results shows that when φba > 0.20, we 
observe ΔYb

s > ΔYa
s . In terms of policy effects, this means that if a policy targets one group 

but peer effects between groups are high, then we can observe increasing inequality between 
the two groups, rather than the expected decrease (assuming that the targeted group has a 
lower starting outcome). In terms of the estimands derived in Section 6 , note that the blue 
surfaces in Figures 5 and 6 are simply IT EI ×nb while the red ones are IT EE×nu

a +AT E ×nt
a, 

plotted for different combinations of parameters. 

[INSERT FIGURE 6HERE] 

In the second exercise, we consider four points from the grid formed by φa and φba and 
look at the empirical distributions of Δyi∈A and Δyi∈B . We estimate these distributions using 
a normal kernel density. We consider the case where φa = 0.1 and φba = 0.1 as a benchmark 
and then increase the strength of peer effects among agents in different ways. 
In Figure 7 we increase the effect within group A only (φa = 0.3.). While this change is 

irrelevant for type B nodes, it has interesting implications for the distribution of outcomes 
among type A nodes (Panel a). While in the benchmark model (the single line), the distribu-
tion is quasi-bimodal (due to the treated and non-treated A nodes), an increase of φa smooths 
the distribution (the bold line). In other words, the higher the endogenous effects, the more 
evenly the benefits of the policy intervention are shared among nodes (individuals). 

[INSERT FIGURE 7HERE] 

In Figure 8 we increase the between-group effect only (φba = 0.3). Type A density remains 
basically unchanged (Panel a) . The impact is instead apparent on the outcome distribution 
of type B nodes (Panel b). One can observe an important shift to the right. This means that 
non treated type B nodes benefit more than non-treated type A nodes ( from the treatment 
to type A nodes). 
The red and blue curves in Figures 7 and 8 are the empirical density functions P [Ya(Ta)−Ya] 

IT EE×nu+AT E×nt 
a aand P [Yb(Ta)− Yb], respectively. They have na 

and IT EI as expected values. 

[INSERT FIGURE 8HERE] 
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7  Concluding  Remarks  

We generalize the linear-in-means model to the presence of two groups and between-group 
interactions. We derive the sufficient conditions to identify the model and propose efficient 
2SLS estimators. We characterize the bias which arises when interactions are ignored and 
evaluate it in finite sample using simulation experiments. We illustrate the relevance of these 
issues for policy purposes. If peer effects are seen as a mechanism in which the treatments could 
propagate through the networks, then accounting for heterogeneous peer effects and between-
group interactions can be helpful in designing and evaluating policy interventions that alter the 
outcome distribution. We show that when between-group interactions are strong, an impulse to 
a given group can engender benefits to another group which are even higher than those accruing 
to the target group. Examples of types of interventions where the local non-target population 
may also be indirectly affected by the treatment through social and economic interaction 
with the target population are widely varied. For example, the recipients of conditional cash 
transfers may share resources with ineligible households who live in the same community or 
with extended family members, which could affect the incentives to accumulate human capital 
(Angelucci et al., 2010). School vouchers or other incentives (such as equipment provision) to 
increase schooling of indigent children may increase the learning ability of untreated children if, 
for example, textbooks or computers are shared among classmates. A number of organizations 
promote the deworming of children in the developing world as a public health and development 
strategy. Supplying deworming drugs to a group of children may benefit untreated children 
by reducing disease transmission, thus lowering infection rates for both groups. 
In sum, our paper contributes to the literature by providing a framework able to decompose 

the treatment response into different components, including the crucial difference between 
endogenous effects and effects stemming from exogenous variations in the characteristics of 
the treated. 
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Bramoullé, Y., H. Djebbari, and B. Fortin (2009). “Identification of peer effects through social 
networks”. In: Journal of Econometrics 150, pp. 41–55. 

Chandrasekhar, A. and R. Lewis (2011). “Econometrics of sampled networks”. In: Unpublished 
manuscript, MIT.[422]. 

Chipman, Hugh A, Edward I George, Robert E McCulloch, et al. (2010). “BART: Bayesian 
additive regression trees”. In: The Annals of Applied Statistics 4.1, pp. 266–298. 

Cohen-Cole, E., X. Liu, and Y. Zenou (2012). “Multivariate Choice and Identification of Social 
Interactions”. In: CEPR Discussion Paper No. DP9159. 

Crump, Richard K et al. (2008). “Nonparametric tests for treatment effect heterogeneity”. In: 
The Review of Economics and Statistics 90.3, pp. 389–405. 

Donald, S. and W. Newey (2001). “Choosing the Number of Instruments”. In: Econometrica 
69.5, pp. 1161–1191. 

Firpo, Sergio (2007). “Efficient Semiparametric Estimation of Quantile Treatment Effects”. 
In: Econometrica 75.1, pages. 

Goldsmith-Pinkham, P. and G. Imbens (2013). “Social networks and the identification of peer 
effects”. In: Journal of Business and Economic Statistics 31, pp. 253–264. 

Hsieh, C. S. and L. F. Lee (2011). A Social Interactions Model with Endogenous Friendship 
Formation and Selectivity. Tech. rep. Working paper. 

Hudgens, M. and E. Halloran (2008). “Toward Causal Inference With Interference”. In: Journal 
of American Statistical Association 103, pp. 832–842. 

Imai, Kosuke, Marc Ratkovic, et al. (2013). “Estimating treatment effect heterogeneity in 
randomized program evaluation”. In: The Annals of Applied Statistics 7.1, pp. 443–470. 

Imbens, G., M. Kolesar, et al. (2011). “Identification and Inference with Many Invalid Instru-
ments”. In: 

Imbens, G. and G. Woolridge (2009). “Recent Developments in the Econometrics of Program 
Evaluation.” In: Journal of Economic Literature 47(1), pp. 5–86. 

Jackson, M.O. and Y. Zenou (forthcoming 2013). Economic Analyses of Social Networks. 
Kelejian, H. and I. R. Prucha (1998). “A generalized spatial two-stage least squares procedure 
for estimating a spatial autoregressive model with autoregressive disturbances”. In: The 
Journal of Real Estate Finance and Economics 17.1, pp. 99–121. 

— (1999). “A generalized moments estimator for the autoregressive parameter in a spatial 
model”. In: International economic review 40.2, pp. 509–533. 

23 



                
          

           
        

             
  

           
           

             
     

               
       

                
           

            
           

             
        

           
      
            

            
              

           
           
            

    
            

      

 

Kelejian, H. and I. R. Prucha (2001). “On the asymptotic distribution of the Moran I test 
statistic with applications”. In: Journal of Econometrics 104.2, pp. 219–257. 

— (2004). “Estimation of simultaneous systems of spatially interrelated cross sectional equa-
tions”. In: Journal of Econometrics 118.1, pp. 27–50. 

— (2007). “HAC estimation in a spatial framework”. In: Journal of Econometrics 140.1, 
pp. 131–154. 

LeBlanc, Michael and Charles Kooperberg (2010). “Boosting predictions of treatment success”. 
In: Proceedings of the National Academy of Sciences 107.31, pp. 13559–13560. 

Liu, X. (2013a). “Estimation of a local-aggregate network model with sampled networks”. In: 
Economics Letters 118.1, pp. 243–246. 

Liu, X. and L. F. Lee (2010). “GMM estimation of social interaction models with centrality”. 
In: Journal of Econometrics 159, pp. 99–115. 

Liu, X., E. Patacchini, and E. Rainone (2013). “The Allocation of Time in Sleep: A Social 
Network Model with Sampled Data”. In: CEPR Discussion Paper No. DP9752. 

Liu, X., E. Patacchini, and Y. Zenou (2014forthcoming). “Endogenous peer effects: Local 
Aggregate or Local Average?” In: Journal of Economic Behavior and Organization. 

Manski, C. F. (1993). “Identification of endogenous social effects: The reflection problem”. In: 
The review of economic studies 60.3, pp. 531–542. 

— (2013). “Identification of treatment response with social interactions”. In: The Economet-
rics Journal 16.1, S1–S23. issn: 1368-423X. 

Miguel, Edward and Michael Kremer (2004). “Worms: Identifiying Impacts on Eduaction and 
Health in the Presence of Treatment Externalities”. In: Econometrica 72, pp. 159–217. 

Rubin, D. (1986). “Which ifs have causal answers? Discussion of Hollands Statistics and causal 
inference””. In: Journal of the American Statistical Association 81, pp. 961–962. 

Sinclair, Betsy, Margaret McConnell, and Donald P. Green (2012). “Detecting Spillover Ef-
fects: Design and Analysis of Multilevel Experiments”. In: American Journal of Political 
Science 56, pp. 1055–1069. 

Staiger, D. and J. H. Stock (1997). “Instrumental Variables Regression with Weak Instru-
ments”. In: Econometrica 65.3, pp. 557–586. 

24 



             
               

                    
   

                 
                

            

               
   

 

          

               
                  
   

             
    

               
               

              
                

               
                

                
        

              
              

                      
   

     

              
            

                 
              

               
       

               
     

   
    

                  
              

                   
                   
   

 

APPENDIX  

Appendix  A:  Assumptions  and  Discussions  

Let us introduce some notation and assume the following regularity conditions: a sequence 
of square matrices {A}, where A = [Aij ], is defined ”uniformly bounded in absolute value” 
(UB) if there exists a constant cb < ∞ (that does not depend on n) such that kAk = P n P n 

∞ 
maxi=1,··· ,n |Aij | < cb and kAk = maxj=1,··· ,n |Aij | < cb. We indicate that {A} isj=1 1 i=1 

bounded only in row (column) sum absolute value as UBR (UBC). For the sake of simplicity 
we will assume that n →∞ implies na →∞ and nb →∞. 

Assumption 1. The elements of �a and �b are iid with zero mean, variance σa 
2 and σb 

2 respec-
tively, and zero covariance. Moments higher than the fourth exist. 

Assumption 2. The elements of Xa and Xb are uniformly bounded constants, Xa and Xb 
1 X 0 1 X 0have full rank k, and lim aXa and lim bXb are finite and non singular. 
na nbna→∞ nb→∞ 

Assumption 3. The sequences of matrices {Ga}, {Gab}, {Gb}, {Gba}, {Ma}, {Mb}, {Jb}, 
and {Ja} are UB. 

The first assumption is needed in order to apply the Kelejian and Prucha (2001) Central 
Limit Theorem (CLT) of a linear and quadratic form. Assumption 2 is standard in the 
literature. Assumption 3 is exploited in Kelejian and Prucha (1999) to limit the spatial 
dependence among the units. It rules out any spatial unit root case. As Lee (2004) pointed 
out, it plays an important role in the derivation of asymptotic properties of the estimators 
for spatial econometric models. It guarantees that the variance of Ya and Yb is bounded as 
n goes to infinity. Observe that this assumption is also crucial for the identification of the 
heterogeneous network model, as shown in Proposition 1. 
Assumption 4 is a sufficient condition for identification of the social network model. For 

assumption 4 to hold, E(Za) must be full column rank for large enough na. 

1 f 0 1 f 0Assumption 4. Fa = lim afa is finite and a full rank matrix, Fb = lim bfb is finite 
n→∞ n n→∞ n 

and a full rank matrix. 

Since the variance of the structural error is var(va) and the concentration parameter (which 
measures the instrument’s strength) is fa 

0 fa/var(va), this assumption implies that the concen-
tration parameter grows at the same rate as the sample size. Such a rate is assumed in 
Bekker (1994). Hence, we assume that the instruments are stronger than assumed in the 
weak-instrument literature.44 For the sake of brevity we focus on equation (2), and we imply 
the same argument holds for equation (3). 

Assumption 5. There exists a K × (k + 2) matrix ΘK such that 
n 
1kE(Za)− HK ΘK k2 → 0 

as n, K →∞. 

44See Staiger and Stock, 1997 or Baltagi et al., 2012 for a panel data version of weak-instrument asymptotics. 
Another interesting extension could be to derive the estimator’s asymptotic properties under many weak 
instruments. In doing so, we are allowing the rate of concentration parameter to be different than the rate of 
the sample size. Consequently, we can compare it with the rate in which K increases. See for example, Chao 
and Swanson (2005) 
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Following Lee and Liu(2010), assumption 5 requires that the (infeasible) best IV matrix 
can be well approximated by a certain linear combination of the feasible IV matrix HK as the 
number of instruments increases with the sample size. Once we assume this, we can deal with 
the approximation of Sa and Sab. We have to approximate this matrix since we cannot use it 
as matrix of instruments because it is formed by unknown parameters. If HK has the following 
structure then assumption 5 holds and we can obtain efficiency under certain conditions. 

(p) b(p)
(H

a(p)
Proposition 5. If kφaGak∞ +kφabφbaCak∞ < 1, let us define HK = K , H K , Xa 

∗, GabXb) 
where 

H
a(p) 

= (Ga(Ga, (Gab(Gb, . . . , G
p+1)Gba), . . . , (Ga(Ga, (Gab(Gb, . . . , G

p+1)Gba)
p+1(E(A), GabJbB),K b b 

b(p)
HK = (Gab(Gb, (Gba(Ga, . . . , G

p
a 
+1)Gab), . . . , (Gb(Gb, (Gba(Ga, . . . , G

p
a 
+1)Gab)

p+1(E(B), GbaJaA), 

where p is an increasing integer valued function of K, there exists a K × (k + 2) matrix Θ(K
p) 

(p) (p)
such that kfa − HK ΘK k∞ → 0 as n,K →∞. 

Therefore, the 2SLS estimator can be asymptotically efficient when we use an increasing 
number of instruments. 
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Appendix  B:  Some  Useful  Lemmas  
1f 0Lemma 1. Recall that Za = fa + va. Let ef = a(I − PK )fa. As K/n = O(1): (i) Tr(ef ) = n√ 

o(1) (ii) v0 PK va = Op(K). (iii) f 0 PK va = Op( nK). (iv) ef = O(tr(ef )). (v) n 
1Z 0 PK Za = a a a 

1 1 1 0 1 0f 0 fa − ef + f 0 PK va + v PK fa + v PK va = Op(1).a a a an n n n 

Proof. (i) See lemma B.3 (i) in Lee and Liu (2010). 
(ii) Let us write v0 = �0 S 0 +�0 J 0G0 S 0 Let us focus on the first aPK va a aPK Sa�a b b ba abPK SabGbaJb�b. 

term of the sum, since E|�0 S 0 | = E[tr(|�0 S 0 |)] = σ2tr(|PK SaS
0 PK |) = O(K)a aPK Sa�a a aPK Sa�a a a 

by lemma B.2 (ii) Lee and Liu (2010), then by Markov’s Inequality Pr(|�aS 0 |) ≥ α) ≤aPK Sa�a 
E(|�aS0 PK Sa�a|)a 

α = Op(K). 
For the second part of the sum, given also that SabGbaJb = Tab where Tab is UB, we can 
apply the same proof and obtain the same order of probability. We then have O(f(x))+ 
O(f(x))=O(f(x)). 

0 0 S 0(iii) For each j we have by Cauchy-Schwarz inequality |ej fa0 PK va| ≤ 
p

ej fa 
0 faej 

p
�a aPK Sa�a = √ √ √ 

O( n)Op( K) = Op( nK). 
(iv) By lemma A.3 (ii) in Donald and Newey (2001).p
(v) 

n 
1Z 0 PK Za = n 

1f 0 fa − O(tr(ef )) + Op(K/n) +Op( K/n) = Op(1).a a 

Lemma 2. Recall that Za = fa + va, let PK Sa = Ψa and PK Tba = Ξba . As K/n = O(1): (i) 
E(v0 ) = σ2[e1, e2][tr(Ψa), ˆ . (ii)E(v0 �0 ) = σ4tr2([(Ψa), (Ξba)])+O(K).aPK �a a φba(Ξba)]

0 p aPK �a aPK va a p p
(iii) [Za 

0 PK �a − [σa 
2[e1, e2][tr(Ψa), φ̂ batr(Ξba)]

0/ (n)] = fa 
0 �a/ 

√ 
n+Op( K/n)+Op( tr(ef )) = √ 

fa 
0 �a/ n + Op(1). 

Proof. (i) E(va 
0 PK �a) = [e1, e2]E([(φabSaGabJb�b + Sa�a), (φbaSabGbaJa�a + Sab�b)]

0)PK �a = 
S 0 0 J 0 G0 S 0 σ2 ˆ[e1, e2][E(�
0 
a aPK �a), E(φba�a a ba abPK �a)]

0 = a[e1, e2][tr(Ψa), φbatr(Ξba)]
0 . 

0 �0 �0 �0(ii) By lemma A.2 in Lee (2001), E(vaPK �a aPK va) = E([�
0 
a(Ψa)�a a(Ψa)�a, �a 

0 Ξba�a aΞba�a]) = X 
a(µ4 − 3σa 

4) [(Ψa), φba(Ξba)]
2 
ii + σ0

4[[tr2(Ψa), φbatr(Ξba)]+ 
i 

tr([(Ψa), φba(Ξba)]
0[(Ψa), φba(Ξba)] + tr([(Ψa)

2 , (Ξba)
2])] 

= σa 
4tr2([(Ψa), (Ξba)]) + O(K), 

where the last equality holds by Lemma B.2 (ii) in Lee and Liu (2010). p
(iii) Since Za 

0 PK � = fa�a−fa 
0 (I−PK )�+vaPK �, then (Za 

0 PK �a−σa 
2[e1, e2][tr(Ψa), φ̂ batr(Ξba)])

0/ (n) = 

√ √ √ 
f 0 �a/ n − f 0 (I − Pa)�/ n + [v0 PK �a − σ2[e1, e2][tr(Ψa), φ̂ batr(Ξba)]

0]/ n.a a a a 

√ 
By Lemma 1 above and by Lemma B.2 (ii) in Lee and Liu (2010) nfa 

0 (I − Pa)�a = p
Op( (Tr(ef ))). By Lemma 2 (i), (ii) and Markov’s inequality for variance we have √1 [va 

0 PK �a− p n 

σa 
2[e1, e2][tr(Ψa), φ̂ ba(Ξba)]

0 = Op( K/n). 
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Appendix  C:  Proofs  

Proof of proposition 1. We need to prove that E(Za) = (E(Gaya), E(Gabyb), Xa, GaXa, GabXb) 
is full column rank. This means that if E(Gaya)d1+E(Gabyb)d2+Xad3+GaXad4+GabXbd5 = 0 
then d1 = d2 = d3 = d4 = d5 = 0, where d1, d2, d3, d4, d5 are parameters. 
By inserting the definitions of E(Gaya) and E(Gabyb) we have: 

Ga(Ma(φabGabJbE(B)δb + E(A)δa)d1 +Gab(Mb(φbaGbaJaE(A)δb + E(B)δa)d2 

+Xad3 + GaXad4 + GabXbd5 = 0. 

More explicitly, 

Ga(Ma(φabGabJb(Xbβb + GXbγb + GbaXaγba) +Xaβa + GXaγa + GabXbγab)d1 

+Gab(Mb(φbaGbaJa(Xaβa + GaXaγa + GabXbγab) +Xbβb + GbXbγb + GbaXaγba)d2 

+Xad3 + GaXad4 + GabXbd5 = 0 (24) . 

Let us assume that Ja, Jb, Ma and Mb are invertible and thus P 
Ja = (φaGa)

−1 = 
∞ 

(φaGa)
k , 

k=0 P 
Jb = (φbGb)

−1 = 
∞ 

(φbGb)
k , 

k=0 
∞ ∞P P

Ma = (φaGa + φabφbaGabJbGba)
−1 = (φaGa + φabφbaGab (φbGb)

kGba)
j , 

j=0 k=0 
∞P P∞ 

Mb = (φbGb + φbaφabGbaJaGab)
−1 = (φbGb + φbaφabGba (φaGa)

kGab)
j . 

j=0 k=0 

Going back to equation (24), we obtain 

∞ ∞ ∞X X X 
Ga( (φaGa + φabφbaGab (φj Gj )Gba)

j (φabGab (φbGb)
k(Xbβb + GbXbγb + GbaXaγba))b b 

j=0 j=0 k=0 

+Xaβa + GaXaγa + GabXbγab)d1 
∞ ∞ ∞X X X 

+Gab( (φbGb + φbaφabGba (φaGa)
kGab)

j (φbaGba (φaGa)
k(Xaβa + GaXaγa + GabXbγab))+ 

j=0 k=0 k=0 

Xbβb + GbXbγb + GbaXaγba)d2 

+Xad3 + GaXad4 + GabXbd5 

The left side of the previous equation is the sum of products of the matrices Ga, Gba, Gab and 
Gb times Xa or Xb weighted by different parameters.

45 

Let us define J = (k, p, m) and C(c(1) ∈ A, ·, ..., c(l) ∈ B, J). C is a set of paths, hereafter 
called a chain, 46 of length l which starts from A and ends at B, having k links from a type 

45The matrices sequence is multiplied by Xa or Xb depending on the last interaction matrix. For instance 
G2 Gab is multiplied by Xb while GbGba is multiplied by Xa.a 

46In this notation a chain includes all possible paths that have common features. For instance, all of paths 
starting from A and arriving to B are in the same chain. 
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B node to another type B node, p links from a type A node to another type A node, and 
m links between nodes of different types. The concept of chain is particularly useful in our 
context. Indeed, the product of adjacency matrices contains the same information of a chain. 
For instance Ga ≡ C(c(1) ∈ A, c(2) ∈ A, k = 0, p = 1,m = 0) and GaGab ≡ C(c(1) ∈ 
A, c(2) ∈ A, c(3) ∈ B, k = 0, p = 1,m = 1). A similar characterization can be written for all 
combinations (products) of adjacency matrices considered in equation (25). 
Taking advantage of this notation, the system in equation (25) can be characterized by the 

following two matrices 

⎤⎡⎤⎡ 
d1 d2 d5 d4 d3 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, Θ 

��
Θa 

= = 
Θab 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, 

Ia 

Ga 

G2 
a 

· 
Gk 

a 

0 0 0 0 1 

βa 0 0 1 0 

βaφa+γa 0 0 0 0 

· · · · · 
(βaφa+γa)φ

k−1 0 0 0 0 a 

· · · · · · 
GabGba 0 0 0 0γba 

· · · · · · 
Gab GbGba 0 0 0 0γbaφb 

· · · · · · 
Gab G

k
b 0 γbaφ

k
b 0 0 0Gba 

· · · · · · 
GaGabGbGba 0 0 0 0βaφbaφabφbφa 

· · · · · · 
Gl GabG

k 
a b φlφbaφabφ

k
bGba βa 0 0 0 0 a 

βb φbaφabφ
k
bGaGabGbGba 0 0 0 0 

· · · · · · 
Gk 

a GabGb
l βb φbaφabφ

k
b 0 0 0 0Gba �� 

Ca 
· · · · · · 

C C(c(1)≡A,·,c(l)≡A,J) f(θ,J)g(Φ,J) f(θ,J)g(Φ,J) 0 0 0= = 
Cab · · · · · · 

Gab 

GaGab 

0 βb 1 0 0 

0 0 0 0γab 

· · · · · · 
Gk γab φ

k−1 
a 0 0 0 0Gaba 

· · · · · · 
Gab Gb 0 (γb+βbφb) 0 0 0 

· · · · · · 
k−1Gab G

k
b 0 (γb+βbφb)φ 0 0 0

b 
· · · · · · 

GaGabGbGbaGabGba 0 0 0 0γbaφbaφab φb 

· · · · · · 
Gl GabG

k
ba γbaφ

l−1φbaφabφ
k
ba 0 0 0 0GbaGabGba 

· · · · · · 
Gab Gb Gba GaGab 0 0 0 0βbφba φabφaφb 

· · · · · · 
GabG

k
b Gba G

l 
a 0 φkβbφbaφabφ

l
ba 0 0 0Gab 

· · · · · · 
C(c(1)≡A,·,c(l)≡B,J) f(θ,J)g(Φ,J) f(θ,J)g(Φ,J) 0 0 0 

· · · · · · 

where C represents different products of Ga, Gba, Gab and Gb (chains) appearing in the left side 
of equation (25) and Θ collects the relative coefficients. Θ has five columns which distinguish 
the elements that are multiplied by d1, d2, d3, d4 or d5. 
The lower panel represents chains starting from A and arriving to B (labeled as Cab), 

while the upper panel collects chains starting from A and coming back to A (labeled as 
Ca). The generic element of Θ is defined by the following objects, θ = (θa, θb), where θa = 
(βa, γa, γab) and θb = (βb, γb, γba); Φ = (φba, φab, φb, φa) and f(θ, J) = βaIJ,βa (βa)+γaIJ,γa (γa)+ 
γabIJ,γab (γab) + βbIJ,βb (βb) + γbIJ,γb (γb) + γbaIJ,γba (γba) is a set of indicator functions that take 
value one if the argument appears in the corresponding chain and zero otherwise. The function Q Q Q 
g(Φ, J) = φb

k φa
l (φbaφab)

m keeps track of the number of times the relative chain k l m 
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passes from one type of node to another scaled by the respective interaction parameters. 
Observe that (d1, d2, d3, d4, d5)

0Θ0H∞ = 0 is equal to the condition E(Gaya)d1 +E(Gabyb)d2 + 
Xad3 +GaXad4 +GabXbd5 = 0. The elements of H∞ are equal to the elements of C multiplied 
by Xa or Xb depending on the last interaction matrix.

47 

From C and Θ one can argue that the model is identified in the cases listed in Proposition 
1. 
Let us focus on case (2). For E(Za) to have full rank, it suffices that Θ has full rank. This 

means that we need the linear independence of at least five chains (rows of C), translating to 
the linear independence of Ia, Ga, G

2 
a, Gab and GabGb. 

48 The corresponding five rows of Θ 
are thus linear independent. Additionally we need to have five linear independent columns of 
Θ, so having βaφa =6 0 and βbφb + γb 6+ γa = 0 suffices to reach the full rank condition for Θ 
and consequently E(Za). The same argument applies for case (3). 

Relationship with chains and trees. In the proof of Proposition 1 we have established the 
equivalence between sequences of products of adjacency matrices and the concept of chains. 
In order to provide a better intuition behind the multiple sufficient conditions argument note 
that, according to the proof of Proposition 1 notation, a set of chains with a certain length p 

p+1can be divided in g number of chains, where g is the number of node types. For instance, 
chains of length 1 can be classified in four categories when nodes are split into two types. 
following proof notation we can define C(1) ≡ C(c(1) ≡ a, c(2) ∈ A, 0, 1, 0) ∪ C(c(1) ∈ 
B, c(2) ∈ B, 1, 0, 0) ∪ C(c(1) ∈ A, c(2) ∈ B, 0, 0, 1) ∪ C(c(1) ∈ B, c(2) ≡ a, 0, 0, 1) (e.g. 
Ga ∪ Gb ∪ Gab ∪ Gba = G). 
We can see this system of chains as a tree, more specifically as a Tree-indexed Markov 

chain. A tree is a graph with a distinguished vertex x0 ∈ g (here a type A node, the starting 
point) and the degree of each vertex is at least two (in our case the number of types, g). Its 
structure is basically determined by a countable set of states (in our case the number of types, 
g) characterized by a transition probability ({p(x, y)|x, y ∈ g} in our case).49 
Let Ta := ∪l,J C(c(1) ∈ A, ·, c(l), J) (Figure 3), it is simply the collection of all possible 

chains of all possible lengths starting in a type A node. For identification purposes, we simply 
need that Ga, Gb, Gab and Gba are not empty (and not full).

50 In words, it means that there 
are no reasons why two randomly drawn nodes cannot be connected for each combination type 
(or that each node is connected with all of other nodes).51 

47Note that H∞ is the IV matrix considered in Section 4, which is approximated by HK in the feasible 2SLS 
estimation. 

48Note that here we need at least three chains from Ca and two from Cab because we are considering the 
outcome equation for type A nodes, i.e. the staring point of chains is always a type A node. 

49Given that here we are not interested in determining the transition probability law of a chain, even if it is 
simple to estimate and is basically the link formation probability considered for all of the possible combinations 
of nodes’ type. Benjamini and Peres (1994) give a detailed discussion on Tree-indexed Markov chain. 

50It is equivalent to say that the probability 0 < P (gij = 1) < 1, i ∈ A, B and j ∈ A, B. Note that transition 
probability can be derived from Ga, Gb, Gab and Gba. Here we are simply excluding the classical linear in 
mean framework (when the matrices are complete) and the case in which there are no connections (when the 
matrices are empty). 

51From a Markov Chain perspective again, a more restrictive condition consists in assuming that the under-
lying Markov Chain is irreducible and aperiodic. This means that type A are connected with type B or type 
A with the same probability (and the same holds for type B). Thus, in this case tree branches with the same 
length have the same probability of being observed. The aperiodicity and irreducibility are not necessary for 
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Figure 3: Tree of Chains when type A and B nodes are considered (or have connections) 

Figure 4: Non-tree of chains when only type A nodes are considered (or have connections) 

An interesting feature of this framework is that, as case (3) tells us, even if Ia, Ga, and 
G2 a are linearly dependent, we can still identify φa and the other parameters relying on linear 
independence of chains passing through type B nodes.52 In other words, we can identify the 
parameters because of the multiple branches of the tree (see Figure 3).53 

Comparison with the identification conditions for homogeneous models. Let us 
conclude this discussion by further highlighting the connection between identification in a 
single group model and in a multiple group one. Let us reproduce a single group model by 
considering only type A nodes. The model is 

ya = φaGaya + βaXa + γaGaXa + �a. (26) 

In order to obtain identification we want (E(Gaya), Xa, GaXa) to have full rank. Given that P∞E(Gaya) = Ga(I −φaGa)
−1(βaXa +γaGaXa) = Ga j=0(φaGa)

j (βaXa +γaGaXa), the matrices 
used in the proof of Proposition 1 can be written in the following way 

the identification condition to hold, but of course are sufficient. 
52Holding condition (3) instead of (2). We basically take advantage of linear independence of Ia, Ga and 

GabGba instead of G
2 
a 

53The additional parameter restrictions (conditions (2b, 3a or 3b) in Proposition 1) are basically due to an 
additional vector in the full rank condition (i.e. E(Gabyb)). 
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⎤⎡ 
0 0 1 
βa 1 0 

βaφa + γa 0 0 

⎤⎡ 
Ia 

Ga 
⎥⎥⎥⎥⎥⎥⎦ , Θ = 

�� 
Θa = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 
· · · 

(βaφa + γa)φa
k−1 0 0 

· · · 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.= 

⎢⎢⎢⎢⎢⎢⎣ 
�� G2 a 

· 
Gk 

a 

C = Ca 

· 

As before, these two matrices respectively represent the chains and their coefficients. Accord-
ing to the proof of Proposition 1, the full rank condition for (E(Gaya), Xa, GaXa) depends on 
C and Θ. From C and Θ one can argue that the model is identified if (see proof of Proposition 
1 for details) 

1. βaφa + γa =6 0, 

2. Ia, Ga and G
2 
a are linear independent. 

These are exactly the conditions of Proposition 1 in Bramoullé et al. (2009). Note that 
if Ia, Ga and Ga 

2 are linearly dependent, then Ga
k is also linearly dependent ∀k. Given that 

here we cannot differentiate nodes, we have Ia ≡ C(0), Ga ≡ C(1), and Ga 
2 ≡ C(2), where 

C(k) represent the set of chains with length k. In terms of chains it means that C(k) ≡ 
{C(k − 1), C(1)} ≡ {C(k − 2), C(2)} ≡ · · · ≡ {C(2), C(k − 2)} ≡ {C(1), C(k − 1)}. In words 
it means that each chain’s set can be represented by at least two sets of chains. So each Gk

a 

Gk−1 Gk−2can be represented by the product of two matrices, Ga , G2 , and so on. This is the a a a 

connection to the linear independence of Ia, Ga, and Ga 
2 as a condition for identification. In 

this case, a length l set of chains cannot be separated by node type, and thus Ta is composed 
only of one chain (Figure 4) instead of multiple chains (Figure 3).54 Therefore, we need Ia, 
Ga, and G

2 
a to be linearly independent in order to have at least three independent chains in 

C and consequently identify the model’s parameters satisfying the restriction βaφa + γa 6 0.= 

Proof of proposition 2. By the classical expansion the estimator is √ 
n(µ̂ − µ0) = n 

1 (Z 0 PK Za)
−1√1 

n Z
0 PK �a. As Za = fa + va, by Lemma 1 (v), we have a a p

n 
1 (Za 

0 PK Za) = Fa + op(1). By Lemma 2 (iii) [Za 
0 PK �a − σa 

2[e1, e2][tr(Ψa), φ̂ ba(Ξba)]
0]/ (n) = 

√ d
f 0 a

2Faa(1) → N(0, σ
Hence, the proposition is derived by Slutzky theorem 

1 1 d
(Z 0 PK Za)

−1√ Z 0 PK � → F −1 · N(0, σ2Fa) = N(0, σ
2F −1).a a a a a a n n 

Proof of proposition 3. Given the proof of Proposition 2, it is sufficient to show that 

σ̂a 
2[e1, e2][tr(Ψa), φ̂ ba(Ξba)]

0/ 
√ 
n = op(1). 

54Borrowing from Markov chains vocabulary again, this is because the state that characterizes the chain is 
only one (A). 

�a/ ) by CLT. n + op
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ˆ ˆ ˆIf we fix Ca, then by Lemma C.12 in Lee and Liu (2008) Ma − Ma = Ma(φa − φa)Ga + 
M̂ a((φ̂ abφ̂ ba−φabφba)Ca). So we can write, tr(Ψ̂ a)−tr(Ψa) = tr(PK (Sa(φ̂)−Sa) = tr(PK (Ga(M̂ a− 

ˆ ˆ ˆ ˆ ˆ ˆ ˆMa) = tr(PK (Ga(Ma(φa − φa)Ga + Ma((φabφba − φabφba)Ca) = (φa − φa)tr(PK (Ga(MaGa) + 
ˆ ˆ ˆ(φbaφba − φabφba)tr(PK (Ga(MaCa)). 
Since the product of UB matrices is still UB (Kelejian and Prucha 1998), using the lemma√ 

B.2 (ii) in Lee and Liu (2010) and the initial n consistency assumption, we obtain √ √ˆ ˆ ˆ ˆ ˆn(φa −φa)tr(PK (Ga(MaGa)+ n(φbaφba −φabφba)tr(PK (Ga(MaCa))/n = op(1)O(K/n)+ 
op(1)O(K/n) = oP (K/n). 
Finally, we have 

√ 
n(σ̂a 

2 − σa 
2)(tr(Ψ̂ a) − tr(Ψa))/n = op(1)op(K/n) = op(K/n) = oP (1) as 

K/n → 0. The same procedure can be applied for 
√ 
n(σ̂b 

2 − σb 
2)(tr(Ξ̂ a) − tr(Ξa))/n and for 

the second element of the stacked vector v. 

Proof of proposition 4. Let p be a finite integer. Let us define the number of instruments 
equal to 

PX 
K = gp + o(1), 

p=1 PP PPso that we have gp = O(gp). Since we assume K/n → 0, we have gp = o(n) by n=1 p=1 

assumption. This implies that gp = o(n). It follows that g = o(n1/p). 

Proof of proposition 5. We prove this proposition for Ha(p) 
. The same applies for H

b(p) 
.K K 

Let ΘK 
(p) 
be the matrix of true parameters derived from the p-order expansion of Θ (see Section 

3). If supkφaGak∞ + supkφabφbaCak∞ < 1, then 

pX 
(p) (p)

HK ΘK = Ga (φaGa + φabφbaCa
k)j (φabGabJbE(B)δb + E(A)δa). 

j=0 

(p) (p) k)p+1SaIt follows that kfa − HK ΘK k∞ = k(φaGa + φabφbaCa (φabGabJbE(B)δb +E(A)δa)k∞ ≤ 
k)p+1k∞k(φaGa + φabφbaCa kSak∞kφabGabJbE(B)δb + E(A)δak∞ = o(1) as p →∞. 
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Appendix  D:  Tables  and  Figures  

Table 1: Monte Carlo Simulation: 1000 obs., 1000 replications 

(1) (2) (3) 
10 max connections 2SLS finite IVs 2SLS large IVs 2SLS bias-corrected 

φa = 0.1 0.100(0.032) 0.100(0.026) 0.099 (0.027) 
φab = 0.2 0.201(0.031) 0.201(0.026) 0.197(0.069) 
βa = 0.5 0.501(0.047) 0.501(0.047) 0.501(0.048) 
γa = 0.5 0.503(0.081) 0.502(0.078) 0.503(0.076) 
γab = 0.5 0.496(0.079) 0.496(0.075) 0.500(0.097) 

20 max connections 2SLS finite IVs 2SLS large IVs 2SLS bias-corrected 

φa = 0.1 0.098(0.025) 0.098(0.020) 0.100(0.020) 
φab = 0.2 0.197(0.023) 0.195(0.019) 0.200(0.019) 
βa = 0.5 0.501(0.048) 0.501(0.048) 0.501(0.048) 
γa = 0.5 0.506(0.096) 0.506(0.093) 0.503(0.093) 
γab = 0.5 0.500(0.097) 0.497(0.093) 0.496(0.093) 

30 max connections 2SLS finite IVs 2SLS large IVs 2SLS bias-corrected 

φa = 0.1 0.099(0.020) 0.098(0.016) 0.099(0.016) 
φab = 0.2 0.198(0.019) 0.195(0.015) 0.199(0.015) 
βa = 0.5 0.500(0.048) 0.501(0.047) 0.501(0.047) 
γa = 0.5 0.506(0.110) 0.507(0.107) 0.505(0.107) 
γab = 0.5 0.500(0.112) 0.498(0.109) 0.497(0.109) 
Note: yb is generated with φb = 0.1, φba = 0.2, βb = 0.5, γb = 0.5, γba = 0.5 

Table 2: Monte Carlo Simulation: 1000 obs., 1000 replications 

(1) (2) (3) 
20 max connections 2SLS few IVs 2SLS many IVs 2SLS bias-corrected 

φa = 0.1 0.099(0.040) 0.095(0.032) 0.097(0.032) 
φab = 0.1 0.101(0.038) 0.101(0.031) 0.099(0.031) 
βa = 0.5 0.501(0.047) 0.505(0.047) 0.501(0.047) 
γa = 0.5 0.504(0.084) 0.506(0.081) 0.506(0.080) 
γab = 0.5 0.497(0.083) 0.497(0.078) 0.498(0.078) 
Note: yb is generated with φb = 0.1, φba = 0.1, βb = 0.5, γb = 0.5, γba = 0.5 

20 max connections 2SLS few IVs 2SLS many IVs 2SLS bias-corrected 

φa = 0.1 0.097(0.029) 0.097(0.022) 0.103(0.022) 
φab = 0.3 0.298(0.027) 0.298(0.021) 0.302(0.021) 
βa = 0.5 0.501(0.048) 0.501(0.048) 0.501(0.048) 
γa = 0.5 0.506(0.077) 0.506(0.075) 0.501(0.075) 
γab = 0.5 0.500(0.076) 0.500(0.072) 0.496(0.072) 
Note: yb is generated with φb = 0.1, φba = 0.3, βb = 0.5, γb = 0.5, γba = 0.5 

20 max connections 2SLS few IVs 2SLS many IVs 2SLS bias-corrected 

φa = 0.1 0.099(0.016) 0.097(0.010) 0.091(0.452) 
φab = 0.4 0.390(0.012) 0.370(0.008) 0.401(0.064) 
βa = 0.5 0.501(0.048) 0.501(0.048) 0.502(0.079) 
γa = 0.5 0.505(0.074) 0.504(0.073) 0.502(0.073) 
γab = 0.5 0.498(0.070) 0.478(0.069) 0.498(0.582) 
Note: yb is generated with φb = 0.2, φba = 0.05, βb = 0.5, γb = 0.5, γba = 0.5 
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Table 3: Monte Carlo Simulation: 1000 obs., 1000 replications, 10 max connections, φb = 
φab = φba = 0.3 ,βb = 0.5 ,γb = γab = γba = 0.5 

2SLS/Misspeficied model 2SLS/misspecified IVs 2SLS/correct model-correct IVs 

φa = 0.3 0.3684 (0.0335) 0.2971 (0.0465) 0.2999 (0.0164) 
βa = 0.5 0.3856 (0.1804) 0.4865 (0.2233) 0.5097 (0.1489) 
γa = 0.5 -0.0016 (0.2315) 0.4929 (0.2102) 0.4963 (0.1765) 

Table  4:  Monte  Carlo  Simulation:  1000  obs.,  1000  replications,  10  max  connections  

(1) (2) (3) 
φa = φb = φba = φab = 0.1 φa = φb = 0.1 ,φba = φab = 0.3 φa = 0.1, φb = 0.2, φba = 0.05 , φab = 0.4 

φ 0.100(0.020) 0.178(0.021) 0.205(0.022) 
β 0.500(0.031) 0.499(0.034) 0.499(0.033) 
γ 0.446(0.022) 0.445(0.024) 0.442(0.025) 

Figure 5: Policy experiment: varying φa and φab 
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Figure 6: Policy experiment: varying φa and φba 

Figure 7: Kernel density estimation of empirical distributions of Δyi∈A and Δyi∈B , increasing φa. 
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Figure 8: Kernel density estimation of empirical distributions of Δyi∈A and Δyi∈B , increasing φba. 
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