CENTER FOR POLICY RESEARCH THE MAXWELL SCHOOL
 WORKING PAPER SERIES

Testing for Spatial Correlation under a Complete Bipartite Network

Badi H. Baltagi and Long Liu

Paper No. 264
July 2024

ISSN: 1525-3066
426 Eggers Hall
Syracuse University
Syracuse, NY 13244-1020
T 315.443.3114 E ctrpol@syr.edu
https://surface.syr.edu/cpr_workingpapers/

CENTER FOR POLICY RESEARCH - Summer 2024

Shannon Monnat, Director

Professor of Sociology, Lerner Chair in Public Health Promotion \& Population Health

Associate Director
Margaret Austin

SENIOR RESEARCH ASSOCIATES

Badi Baltagi, ECN
Robert Bifulco, PAIA
Monica Deza, ECN
Sean Drake, SOC
Amy Fairchild, MAX
Alfonso Flores-Lagunes, ECN
Iliya Gutin, CPR
Sarah Hamersma, PAIA
Madonna Harrington Meyer, SOC
Colleen Heflin, PAIA
Yilin Hou, PAIA

Ethan Coffel, GEO
Christopher Faricy, POL SCI
Shana Kushner Gadarian, POL SCI Jun Li, PAIA

Roseanna Benser, SOC
Mayra Cervantes, PAIA
Brandon Charles, PAIA
Ehsan Dowlatabadi, ECN
Joshua Grove, SOC
Lyuan Han, PAIA
Ashraf Haque, PAIA
Lucas Kaplan, ECN

POSTDOCTORALSCHOLARS

Michael Dunaway, Postdoctoral Research Scholar

Hugo Jales, ECN
Gabriela Kirk-Werner, SOC
Jeffrey Kubik, ECN
Yoonseok Lee, ECN
Leonard M. Lopoo, PAIA
Amy Lutz, SOC
Yingyi Ma, SOC
Laura-Anne Minkoff-Zern, GEO
Shannon Monnat, SOC
Tomás Olivier, PAIA
Jan Ondrich, ECN

RESEARCH AFFILIATES

Andrew London, SOC
Jennifer Karas Montez, SOC
Merril Silverstein, SOC
Emily Wiemers, PAIA

GRADUATE ASSOCIATES

Harneet Kaur, SOC SCI
Dong Lee, PAIA
Mitchell McFarlane, PAIA
Nicholas Oesterling, PAIA
Michael Quinn, ECN
Shaneya Simmelkjaer, SOC
Sarah Souders, PAIA
Juan Uribe-Quintero, PAIA

RESEARCH STAFF
Jack Baldwin, Senior Associate, Maxwell X Lab

Hannah Patnaik, Managing Director, Maxwell X Lab

David Popp, PAIA
Michah Rothbart, PAIA
Alexander Rothenberg, ECN
Rebecca Schewe, SOC
Ying Shi, PAIA
Saba Siddiki, PAIA
Perry Singleton, ECN
Michiko Ueda-Ballmer, PAIA
Yulong Wang, ECN
Rick Welsh, SOC
Maria Zhu, ECN

Peter Wilcoxen, PAIA
Janet Wilmoth, SOC
Douglas Wolf, PAIA*

Francisco Villarroel, PAIA
Shuping Wang, PAIA
Jingni Zhang, PAIA
Yuwei Zhang, PAIA
Bo Zheng, PAIA

CPR STAFF

Katrina Fiacchi, Assistant Director
Zia Jackson, Office Coordinator
Alyssa Kirk, Communications Specialist
Davor Mondom, CPDG Center
Coordinator
Candi Patterson, Computer
Consultant

Abstract

This note shows that for a spatial regression with a weight matrix depicting a complete bipartite network, the Moran I test for zero spatial correlation is never rejected when the alternative is positive spatial correlation no matter how large the true value of the spatial correlation coefficient. In contrast, the null hypothesis of zero spatial correlation is always rejected (with probability one asymptotically) when the alternative is negative spatial correlation and the true value of the spatial correlation coefficient is near 1.

JEL No.: C12; C21; C31.

Keywords: Spatial Error Model; Moran I Test, Complete Bipartite Network.

Authors: Badi H. Baltagi, Distinguished Professor, The Maxwell School of Citizenship and Public Affairs, Syracuse University, 426 Eggers Hall, Syracuse, NY 13244, bbaltagi@syr.edu; Long Liu, Professor, Department of Economics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, liul@fau.edu.

1 Introduction

Several papers have pointed out that some special spatial weighting matrices cause problems in testing for zero spatial correlation. For example, one popular special spatial weighting matrix is the equal weight matrix that has zero elements across the diagonal and equal elements $1 /(n-1)$ off the diagonal, where n denotes the sample size. In this scenario, everybody in the sample is everybody's neighbor and affects his or her neighbor equally. Such a weighting matrix was considered by Case (1992), Kelejian and Prucha (2002), Kelejian et al. (2006) and Baltagi (2006), to name a few. For this equal weight matrix, Baltagi and Liu (2009) showed that the Lagrange Multiplier (LM) test for spatial lag dependence is always equal to $n /(2 n-1)$ and is not a function of the spatial parameter ρ. This means that this LM test statistic converges to $1 / 2$ as $n \rightarrow \infty$, no matter what the true value of the spatial correlation coefficient ρ is. It also means that zero spatial lag correlation is never rejected for all values of ρ. Martellosio (2011) further showed that any invariant test of equal weights spatial dependence must have power equal to its size.

In this paper, we consider another special spatial weighting matrix that is used in describing the complete bipartite network, where individuals in the sample are divided into two blocks numbering p and q with $p+q=n$. In this network, each individual in one block is connected to all individuals in the other block but not connected to any individual in the same block. This weighting matrix has been used by Jackson (2008), Bramoullé, Djebbari and Fortin (2009), Lee, Liu and Lin (2010), Lin (2010), Blume, Brock, Durlauf and Ioannides (2011), Beckett (2016), Hillier and Martellosio (2018), Rödder, Dellnitz, Kulmann, Litzinge and Reucher (2019), Hsieh, Lin and Patacchini (2020), Li, Cao, Li, Tan and Meng (2022) and Martellosio (2022), to name a few. When $p=1$ or $q=1$, it reduces to the star network, a particularly important case in network theory, where one individual is connected to all other individuals in a group and all the other individuals in the group connect only to him. For the spatial error model with this complete bipartite network weight matrix, we show that asymptotically, the Moran I test, which tests the null of no spatial correlation, can never reject the null hypothesis against positive spatial autocorrelation no matter how large the true value of the spatial correlation coefficient. In contrast, the Moran I test will always reject the null hypothesis of zero spatial correlation against negative spatial autocorrelation, (with probability 1 asymptotically) when the true value of ρ is near -1 .

2 Model and Results

Consider the following linear regression with spatially correlated error term:

$$
\begin{equation*}
y_{n}=X_{n} \beta+u_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n}=\rho W_{n} u_{n}+\varepsilon_{n} \tag{2}
\end{equation*}
$$

where y_{n} is an $n \times 1$ vector for the dependent variable. ι_{n} is a vector of ones of dimension $n . X_{n}$ is an $n \times k$ matrix of exogenous variables including a constant. β is a $k \times 1$ vector of parameters. ρ is a scalar parameter between -1 and 1. u_{n} and ε_{n} are $n \times 1$ vectors, where ε_{n} is independent and identically distributed as Normal with zero mean and variance σ^{2}. The $n \times n$ spatial weight matrix W_{n} is row normalized and has zero elements across the diagonal, see Anselin (1988) and Anselin and Bera (1998) for an excellent treatment of this subject. Define $B_{n}=I_{n}-\rho W_{n}$, where I_{n} is an identity matrix of dimension n. The spatial error term in Equation (2) can be rewritten as $u_{n}=B_{n}^{-1} \varepsilon_{n}$ so that $E\left(u_{n} u_{n}^{\prime}\right)=\sigma^{2}\left(B_{n}^{\prime} B_{n}\right)^{-1}$. The Moran I test statistic for the null hypothesis of $H_{0}: \rho=0$ is given by:

$$
\begin{equation*}
I=\frac{\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}}{\hat{u}_{n}^{\prime} \hat{u}_{n}} \tag{3}
\end{equation*}
$$

where \hat{u}_{n} is the OLS residual from Equation (1), see Cliff and Ord (1972). This Moran I test has been well studied by Burridge (1980), Anselin (1988), Kelejian and Prucha (2001), Krämer (2005), Martelosio (2010, 2012) and Baltagi and Yang (2013), to mention a few. As shown in Baltagi and Yang (2013), the standerdized Moran I statistic is asymptotically distributed as $N(0,1)$ under the null hypothesis of $H_{0}: \rho=0$. To be specific, let

$$
\begin{equation*}
I^{*}=\frac{I-\mu_{I}}{\sigma_{I}} \tag{4}
\end{equation*}
$$

where $\mu_{I}=\frac{1}{n-k} \operatorname{tr}\left(M_{n} W_{n}\right)$ and $\sigma_{I}=\sqrt{\frac{\operatorname{tr}\left(M_{n} W_{n} M_{n} W_{n}^{\prime}\right)+\operatorname{tr}\left(M_{n} W_{n} M_{n} W_{n}\right)-\frac{2}{n-k}\left[\operatorname{tr}\left(M_{n} W_{n}\right)\right]^{2}}{(n-k)(n-k+2)}}$, where $M_{n}=I_{n}-P_{n}$ with $P_{n}=X_{n}\left(X_{n}^{\prime} X_{n}\right)^{-1} X_{n}^{\prime}$. We have $I^{*} \xrightarrow{d} N(0,1)$ under the null hypothesis.

In this paper, we will consider the spatial weighting matrix that corresponds to the complete bipartite network, where individuals in the sample are divided into two blocks such that each individual in one block is connected to all individuals in the other block but to none in the same block. To be specific, the complete bipartite network spatial weighting matrix is as follows:

$$
W_{n}=\left[\begin{array}{cc}
0_{p} & \frac{1}{q} \iota_{p} \iota_{q}^{\prime} \tag{5}\\
\frac{1}{p} \iota_{q} \iota_{p}^{\prime} & 0_{q}
\end{array}\right]
$$

where ι_{p} and ι_{q} are vectors of ones of dimension p and q, respectively, with $p+q=n .0_{p}$ and 0_{q} are matrices of zeros of dimension $p \times p$ and $q \times q$, respectively. This weighting matrix has been studied by Jackson (2008), Bramoullé, Djebbari and Fortin (2009), Lee, Liu and Lin (2010), Lin (2010), Blume, Brock, Durlauf and Ioannides (2011), Beckett (2016), Hillier and Martellosio (2018), Rödder, Dellnitz, Kulmann, Litzinge and Reucher (2019), Hsieh, Lin and Patacchini (2020), Li, Cao, Li, Tan and Meng (2022) and Martellosio (2022), to name a few. When $p=1$ or $q=1$, it reduces to the star network, a particularly important case in network theory, where one individual is connected to all other individuals in a group and all the others in the group connect only to him. In what follows, for the complete bipartite network spatial weighting matrix defined in Equation (5), we derive the asymptotic power of the Moran I test statistic against positive or negative spatial autocorrelation, respectively. As shown in Lee, Liu and Lin (2010),

$$
W_{n}^{2}=\left[\begin{array}{cc}
\frac{1}{p} \iota_{p} \iota_{p}^{\prime} & 0_{p q} \tag{6}\\
0_{q p} & \frac{1}{q} \iota_{q} \iota_{q}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\bar{J}_{p} & 0_{p q} \\
0_{q p} & \bar{J}_{q}
\end{array}\right]
$$

where $\bar{J}_{p}=\frac{1}{p} \iota_{p} \iota_{p}^{\prime}, \bar{J}_{q}=\frac{1}{q} \iota_{q} \iota_{q}^{\prime}, 0_{p q}, 0_{q p}$ are matrices of zeros of dimension $p \times q$ and $q \times p$, respectively. Note that

$$
W_{n}+W_{n}^{2}=\left[\begin{array}{cc}
\frac{1}{p} \iota_{p} \iota_{p}^{\prime} & \frac{1}{q} \iota_{p} \iota_{q}^{\prime} \\
\frac{1}{p} \iota_{q} \iota_{p}^{\prime} & \frac{1}{q} \iota_{q} \iota_{q}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{p} \iota_{n} \iota_{p}^{\prime} & \frac{1}{q} \iota_{n} \iota_{q}^{\prime}
\end{array}\right]=\iota_{n}\left[\begin{array}{cc}
\frac{1}{p} \iota_{p}^{\prime} & \frac{1}{q} \iota_{q}^{\prime}
\end{array}\right] .
$$

Hence $M_{n}\left(W_{n}+W_{n}^{2}\right)=M_{n} \iota_{n}\left[\begin{array}{cc}\frac{1}{p} \iota_{p}^{\prime} & \frac{1}{q} \iota_{q}^{\prime}\end{array}\right]=0$ using $M_{n} \iota_{n}=0$ when ι_{n} is included in X_{n} so that $M_{n} W_{n}=$ $-M_{n} W_{n}^{2}$. Together with the fact $\hat{u}_{n}=M_{n} u_{n}$, we have $\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}=u_{n}^{\prime} M_{n} W_{n} M_{n} u_{n}=-u_{n}^{\prime} M_{n} W_{n}^{2} M_{n} u_{n}=$ $-\hat{u}_{n}^{\prime} W_{n}^{2} \hat{u}_{n}$. It is easy to see that W_{n}^{2} is symmetric and idempotent since \bar{J}_{p} and \bar{J}_{q} are symmetric and idempotent. Hence $\hat{u}^{\prime} W^{2} \hat{u} \geq 0$. Therefore,

$$
I=\frac{\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}}{\hat{u}_{n}^{\prime} \hat{u}_{n}}=-\frac{\hat{u}_{n}^{\prime} W_{n}^{2} \hat{u}_{n}}{\hat{u}_{n}^{\prime} \hat{u}_{n}} \leq 0
$$

and hence

$$
I^{*}=\frac{I-\mu_{I}}{\sigma_{I}} \leq-\frac{\mu_{I}}{\sigma_{I}}
$$

Rewrite $X_{n}=\left[\begin{array}{c}X_{p} \\ X_{q}\end{array}\right]$, let $\bar{X}_{p}=\frac{1}{p} \iota_{p}^{\prime} X_{p}, \bar{X}_{q}=\frac{1}{q} \iota_{q}^{\prime} X_{q}$ and $\bar{X}=\frac{1}{n} \iota_{n}^{\prime} X_{n}$. Define $E_{n}=I_{n}-\bar{J}_{n}$ and $\bar{J}_{n}=\frac{1}{n} \iota_{n} \iota_{n}^{\prime}$ where ι_{n} be a vector of ones of dimension n. Let $\tilde{X}_{n}=E_{n} X_{n}=X_{n}-\iota_{n} \bar{X}$. We assume the following:

Assumption 1 We assume $\left\|\frac{\sqrt{p q}}{n}\left(\bar{X}_{p}-\bar{X}_{q}\right)\right\|=o_{p}(1)$. In addition, plm $m_{n \rightarrow \infty} \frac{1}{n} \tilde{X}_{n}^{\prime} \tilde{X}_{n}$ exists and is a positive definite matrix.

Assumption 1 assumes the difference between \bar{X}_{p} and \bar{X}_{q} is small. When $X_{n}=\iota_{n}$ for example, $\bar{X}_{p}=$ $\bar{X}_{q}=1$ so that $\bar{X}_{p}-\bar{X}_{q}=0$. Also note that $\frac{\sqrt{p q}}{n} \leq \frac{p+q}{2 n}=\frac{1}{2}$, where the equality holds when $p=q=\frac{n}{2}$. For a star network for example, where $p=1$ and $q=n-1, \frac{\sqrt{p q}}{n}=\frac{\sqrt{n-1}}{n} \approx \frac{1}{\sqrt{n}}$. To test the null hypothesis of no spatial correlation, i.e., $H_{0}: \rho=0$ against the alternative hypothesis of positive spatial autocorrelation, i.e., $H_{1}: \rho>0$. One rejects H_{0} if $I^{*}>1.645$. However, in the following theorem, we show that $-\frac{\mu_{I}}{\sigma_{I}}=\frac{1}{\sqrt{2}}+o_{p}(1)$ as $n \rightarrow \infty$, the null will never be rejected against the alternative hypothesis of positive spatial correlation, and the test has no power no matter how large ρ is.

Theorem 1 For the complete bipartite network spatial weighting matrix, under Assumption 1, we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(I^{*}>\frac{1}{\sqrt{2}}\right)=0
$$

for all ρ.
The proof is given in the supplemental Appendix available upon request from the authors. Theorem 1 implies that I^{*} is always bounded by $\frac{1}{\sqrt{2}}$ as $n \rightarrow \infty$. Since $1.645>\frac{1}{\sqrt{2}}$, the null hypothesis is never rejected against the alternative hypothesis of $\rho>0$, no matter how large ρ is. 1

To test the null hypothesis of no spatial correlation, i.e., $H_{0}: \rho=0$, against the alternative of negative spatial autocorrelation, i.e., $H_{1}: \rho<0$. One rejects H_{0} if $I^{*}<-1.645$. The following theorem shows that as $n \rightarrow \infty$, and ρ is close to -1 , the null hypothesis of no spatial correlation is always rejected against the alternative hypothesis of negative spatial correlation and the asymptotic power of the Moran I test is 1 .

Theorem 2 For the complete bipartite network spatial weighting matrix, under Assumption 1. if $\rho=-1+$ $\frac{1}{\psi_{n}}$, where $\psi_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(I^{*}<\eta\right)=1
$$

for every constant $\eta<0$.
The proof is given in the supplemental Appendix available upon request from the authors. For time series, Phillips and Magdalinos (2007) derived the asymptotic theory for the near-unit root case. Lee and Yu (2013) and Baltagi, Kao and Liu (2013) extended the near-unit root case to spatial regression models. In particular, Theorem 3 in Baltagi, Kao and Liu (2013) showed that the QMLE of ρ has a faster convergence rate when the spatial error is near nonstationary. In the proof of Theorem 2 , we showed that $I^{*} \xrightarrow{p}-\infty$ if

[^0]$\psi_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Theorem 2 implies that as $n \rightarrow \infty$, and ρ is close to -1 , the null hypothesis of no spatial correlation is always rejected against the alternative of negative spatial correlation with probability 1 asymptotically. It is worth pointing out that the result in Theorem 2 holds in general, see Theorem 2 in Kelejian and Prucha (2001) which provides a general result for the power of the test to approach 1 as $n \rightarrow \infty$. One can verify that the condition in Kelejian and Prucha (2001) is satisfied when $\rho=-1+\frac{1}{\psi_{n}}$.

3 Monte Carlo Simulation

Following Baltagi and Yang (2013), we generate the data from Equations (1) and (2), where $X_{n}=\left(\iota_{n}, x_{1 n}, x_{2 n}\right)$ and $\beta=(5,1,1)^{\prime} . \iota_{n}$ is a vector of ones of dimension $n . x_{1 n}, x_{2 n}$ and ε_{n} are $n \times 1$ vectors with elements $x_{1 i} \stackrel{i i d}{\sim} \sqrt{6} U(0,1), x_{2 i} \stackrel{i i d}{\sim} N(0,1) / \sqrt{2}$ and $\varepsilon_{i} \stackrel{i i d}{\sim} N(0,1)$, respectively. ρ varies over the range $(-0.99,-0.9,-0.6,-0.3,0,0.3,0.6,0.9,0.99)$. We let $\left.\frac{p}{n}=0.3\right]^{2}$ The sample sizes considered are $n=(50,200)$. For each experiment, we perform 10,000 replications. For each data generating process, we report the performance of the standardized Moran I test statistic I^{*}.

Table 1 reports the summary statistics of I^{*} and the empirical frequency of $I^{*}>1.645$ corresponding to the rejection rates of the null hypothesis $H_{0}: \rho=0$ against the alternative hypothesis of positive spatial autocorrelation, i.e., $H_{1}: \rho>0$. Also, the empirical frequency of $I^{*}<-1.645$ corresponding to the rejection rates of the null hypothesis $H_{0}: \rho=0$ against the alternative hypothesis of negative spatial autocorrelation, i.e., $H_{1}: \rho<0$. Figure 1 shows the histograms of I^{*} for $n=200$. These simulations confirm our theoretical results. In summary, the paper's main result is that, regardless of ρ, I^{*} asymptotically lies between $-\infty$ and $1 / \sqrt{2}$ under the complete bipartite network. If ρ lies in a usual range satisfying spatial stability, $I^{* \prime} s$ asymptotic distribution might have an upper bound of $1 / \sqrt{2}$. However, if ρ is close to $-1, I^{*}$ would exhibit a different pattern, converging to $-\infty$. This can be verified by comparing the first panel of Figure 1 (odd pattern if $\rho=-0.99$) with the other panels of Figure 1 (highest density around $1 / \sqrt{2}$).

Acknowledgements

We would like to thank an anonymous referee whose comments improved our paper.

References

Anselin, L. (1988), Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, Dordrecht.

[^1]Anselin, L. and Bera, A.K.(1998), Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics, in A. Ullah and E.E.A Giles (eds.) Handbook of Applied Economics Statistics (Marcel Dekker: New York).

Baltagi, B.H., Kao, C. and Liu, L. (2013). The Estimation and Testing of a Linear Regression with Near Unit Root in the Spatial Autoregressive Error Term. Spatial Economic Analysis, 8(3), 241-270.

Baltagi, B.H. and Liu, L. (2009). Spatial Lag Test with Equal Weights, Economics Letters, 104(2), 81-82.
Baltagi, B.H. and Yang, Z. (2013), Standardized LM Tests for Spatial Error Dependence in Linear or Panel Regressions, The Econometrics Journal, 16(1), 103-134.

Beckett, S. J. (2016). Improved Community Detection in Weighted Bipartite Networks. Royal Society open science, 3(1), 140536.

Blume, L. E., Brock, W. A., Durlauf, S. N., and Ioannides, Y. M. (2011). Identification of Social Interactions. In Handbook of social economics (North-Holland), Vol. 1, 853-964.

Bramoullé, Y., Djebbari, H. and Fortin, B. (2009), Identification of Peer Effects through Social Networks, Journal of Econometrics 150, 41-55.

Burridge, P. (1980), On the Cliff-Ord Test for Spatial Correlation, Journal of the Royal Statistical Society, Series B, 42, 107-108.

Case, A, (1992). Neighborhood Influence and Technological Change. Regional Science and Urban Economics 22, 491-508.
Cliff, A.D., and Ord, J.K. (1972), Testing for Spatial Autocorrelation among Regression Residuals. Geographical Analysis 4, 267-84.

Hillier, G., and Martellosio, F. (2018). Exact and Higher-order Properties of the MLE in Spatial Autoregressive Models, with Applications to Inference. Journal of Econometrics, 205(2), 402-422.

Hsieh, C. S., Lin, X., and Patacchini, E. (2020). Social Interaction Methods, in: Zimmermann, K.F. (eds) Handbook of Labor, Human Resources and Population Economics. Springer, 1-30.

Jackson. M.O. (2008), Social and Economic Networks, Princeton University Press, Princeton.
Kelejian, H.H. and Prucha, I.R. (2001), On the Asymptotic Distribution of the Moran I Test Statistic with Applications, Journal of Econometrics, 104(2), 219-257.

Kelejian, H.H., Prucha, I.R., (2002). 2SLS and OLS in a spatial autoregressive model with equal spatial weights. Regional Science and Urban Economics 32 (6), 691-707.

Kelejian, H.H., Prucha, I.R., and Yuzefovich, Y. (2006). Estimation Problems in Models with Spatial Weighting Matrices which Have Blocks of Equal Elements. Journal of Regional Science 46, 507-515.

Krämer, W. (2005), Finite Sample Power of Cliff-Ord-Type Tests for Spatial Disturbance Correlation in Linear Regression, Journal of Statistical Planning and Inference, 128, 489-496.

Lee, L.F., Liu, X., and Lin, X. (2010) Specification and Estimation of Social Interaction Models with Network Structures, The Econometrics Journal, 13, 145-176.

Lee, L. F., and Yu, J. (2013). Near Unit Root in the Spatial Autoregressive Model. Spatial Economic Analysis, 8(3), 314-351.

Li, Y., Cao, H., Li, J., Tan, Y., and Meng, Z. (2022). Social Effects of Topic Propagation on Weibo. Journal of Management Science and Engineering, 7(4), 630-648.

Lin, X. (2010). Identifying Peer Effects in Student Academic Achievement by Spatial Autoregressive Models with Group Unobservables. Journal of Labor Economics, 28(4), 825-860.

Martellosio, F. (2011). Nontestability of Equal Weights Spatial Dependence, Econometric Theory, 27(6), 1369-1375.
Martellosio, F. (2012), Testing for Spatial Autocorrelation: the Regressors that Make the Power Disappear, Econometric Reviews, 31(2), 215-240.

Martellosio, F. (2022). Non-Identifiability in Network Autoregressions. arXiv working paper, https://arxiv.org/pdf/2011.11084.pdf.
Phillips, P.C.B. and T. Magdalinos (2007). Limit Theory for Moderate Deviations from a Unit Root, Journal of Econometrics, 136, 115-130.

Rödder, W., Dellnitz, A., Kulmann, F., Litzinger, S., and Reucher, E. (2019). Bipartite Structures in Social Networks: Traditional versus Entropy-driven Analyses. Entropy, 21(3), 277.

Table 1: Simulation Results of the Standardized Moran I Test Statistic $I^{*}(p / n=0.3)$

ρ	-0.99	-0.9	-0.6	-0.3	0	0.3	0.6	0.9	0.99
Min	-34.704	-33.625	-22.886	-15.506	-12.199	-5.228	-4.304	-3.039	-3.134
1st Quartile	-33.803	-24.381	-4.391	-1.192	-0.241	0.105	0.312	0.422	0.443
Median	-32.811	-15.795	-1.223	0.032	0.379	0.514	0.584	0.623	0.632
Mean	-30.638	-15.012	-2.720	-0.668	-0.005	0.266	0.414	0.497	0.509
3rd Quartile	-30.877	-5.098	0.275	0.573	0.652	0.682	0.697	0.706	0.706
Max	0.727	0.735	0.742	0.742	0.750	0.747	0.750	0.761	0.746
Frequency of $I^{*}>1.645$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Frequency of $I^{*}<-1.645$	0.986	0.844	0.453	0.200	0.071	0.023	0.005	0.002	0.001

$n=200$									
ρ	-0.99	-0.9	-0.6	-0.3	0	0.3	0.6	0.9	0.99
Min	-140.522	-124.453	-50.342	-30.464	-9.048	-6.141	-3.994	-2.102	-1.846
1st Quartile	-137.328	-56.025	-4.752	-1.194	-0.238	0.138	0.331	0.451	0.464
Median	-133.235	-26.020	-1.269	0.047	0.385	0.523	0.580	0.621	0.629
Mean	-117.641	-33.845	-3.354	-0.718	0.005	0.282	0.422	0.514	0.528
3rd Quartile	-117.029	-6.364	0.257	0.566	0.641	0.671	0.682	0.692	0.694
Max	0.712	0.713	0.713	0.713	0.713	0.715	0.714	0.714	0.714
Frequency of $I^{*}>1.645$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Frequency of $I^{*}<-1.645$	0.986	0.859	0.458	0.200	0.065	0.019	0.004	0.001	0.000

[^2]Figure 1: Histogram of the Standardized Moran I Test Statistic $I^{*}(n=200, p / n=0.3)$

Supplemental Appendix

This supplemental appendix provides proofs and extra Monte Carlo results which are not intended for publication due to space constraints.

A Additional Monte Carlo Simulation Results of the Moran Test

In this section, we present additional the Monte Carlo simulation results of the Moran test. Table 2 and Figure 2 report the results of $\frac{p}{n}=0.1$. Table 3 and Figure 3 report the results of $\frac{p}{n}=0.5$. Overall, their results are similar to those of $\frac{p}{n}=0.3$ reported in the paper.

Table 2: Simulation Results of the Standardized Moran I Test Statistic $I^{*}(p / n=0.1)$

ρ	-0.99	-0.9	-0.6	-0.3	0	0.3	0.6	0.9	0.99
Min	-30.402	-29.558	-22.988	-14.751	-8.829	-4.491	-4.362	-2.545	-2.962
1st Quartile	-29.807	-22.942	-4.339	-1.142	-0.252	0.146	0.321	0.429	0.437
Median	-29.131	-15.692	-1.171	0.045	0.384	0.526	0.588	0.626	0.628
Mean	-27.291	-14.278	-2.668	-0.654	-0.004	0.291	0.421	0.500	0.513
3rd Quartile	-27.704	-5.260	0.268	0.573	0.652	0.683	0.697	0.704	0.705
Max	0.730	0.745	0.750	0.750	0.754	0.751	0.752	0.755	0.755
Frequency of $I^{*}>1.645$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Frequency of $I^{*}<-1.645$	0.987	0.847	0.447	0.196	0.072	0.019	0.006	0.002	0.001

$n=200$									
ρ	-0.99	-0.9		-0.6	-0.3	0	0.3	0.6	0.9
Min	-136.177	-124.292	-50.456	-17.371	-11.732	-7.452	-3.250	-2.880	-2.614
1st Quartile	-133.245	-54.416	-5.099	-1.160	-0.208	0.148	0.341	0.444	0.459
Median	-129.508	-25.402	-1.291	0.064	0.388	0.512	0.587	0.621	0.627
Mean	-114.329	-33.056	-3.443	-0.676	0.013	0.287	0.433	0.506	0.524
3rd Quartile	-114.486	-6.160	0.240	0.574	0.643	0.667	0.684	0.692	0.693
Max	0.714	0.715	0.715	0.715	0.715	0.716	0.716	0.716	0.716
Frequency of $I^{*}>1.645$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Frequency of $I^{*}<-1.645$	0.985	0.856	0.464	0.196	0.065	0.017	0.004	0.001	0.001

[^3]Figure 2: Histogram of the Standardized Moran I Test Statistic $I^{*}(n=200, p / n=0.1)$

Table 3: Simulation Results of the Standardized Moran I Test Statistic $I^{*}(p / n=0.5)$

ρ	-0.99	-0.9	-0.6	-0.3	0	0.3	0.6	0.9	0.99
Min	-34.255	-33.305	-27.457	-16.688	-8.823	-5.505	-3.070	-2.464	-5.823
1st Quartile	-33.363	-24.338	-4.370	-1.211	-0.249	0.127	0.311	0.422	0.443
Median	-32.396	-16.097	-1.212	0.059	0.393	0.523	0.585	0.626	0.632
Mean	-30.168	-15.180	-2.699	-0.661	0.009	0.280	0.416	0.493	0.513
3rd Quartile	-30.428	-5.521	0.294	0.580	0.654	0.686	0.697	0.707	0.708
Max	0.738	0.747	0.751	0.757	0.758	0.767	0.764	0.756	0.757
Frequency of $I^{*}>1.645$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Frequency of $I^{*}<-1.645$	0.984	0.854	0.452	0.201	0.068	0.022	0.006	0.002	0.001

$$
n=200
$$

| ρ | -0.99 | -0.9 | -0.6 | -0.3 | 0 | 0.3 | 0.6 | 0.9 | 0.99 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Min | -140.108 | -122.600 | -53.443 | -21.542 | -8.710 | -5.486 | -3.522 | -2.912 | -2.082 |
| 1st Quartile | -136.951 | -56.609 | -4.996 | -1.207 | -0.248 | 0.141 | 0.326 | 0.444 | 0.461 |
| Median | -132.993 | -26.710 | -1.258 | 0.046 | 0.376 | 0.513 | 0.580 | 0.621 | 0.627 |
| Mean | -117.116 | -34.086 | -3.391 | -0.727 | -0.007 | 0.281 | 0.423 | 0.508 | 0.525 |
| 3rd Quartile | -116.913 | -6.113 | 0.259 | 0.566 | 0.638 | 0.668 | 0.682 | 0.692 | 0.693 |
| Max | 0.712 | 0.714 | 0.714 | 0.715 | 0.714 | 0.715 | 0.716 | 0.715 | 0.715 |
| Frequency of $I^{*}>1.645$ | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Frequency of $I^{*}<-1.645$ | 0.986 | 0.854 | 0.462 | 0.201 | 0.070 | 0.020 | 0.005 | 0.000 | 0.000 |

[^4]Figure 3: Histogram of the Standardized Moran I Test Statistic $I^{*}(n=200, p / n=0.5)$

B Proofs

Lemma 1 Under Assumption 1, we have
1.

$$
\operatorname{tr}\left(E_{n} W_{n}^{2}\right)=\operatorname{tr}\left(E_{n} W_{n}^{2} E_{n} W_{n}^{2}\right)=1
$$

2.

$$
\frac{1}{n} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}=o_{p}(1)
$$

3.

$$
\operatorname{tr}\left(M_{n} W_{n}^{2}\right)=1+o_{p}(1)
$$

4.

$$
\operatorname{tr}\left(M_{n} W_{n}^{2} M_{n} W_{n}^{2}\right)=1+o_{p}(1)
$$

Proof. (1) Note that

$$
W_{n}^{2} \iota_{n}=\left[\begin{array}{cc}
\bar{J}_{p} & 0_{p q} \\
0_{q p} & \bar{J}_{q}
\end{array}\right]\left[\begin{array}{l}
\iota_{p} \\
\iota_{q}
\end{array}\right]=\left[\begin{array}{l}
\iota_{p} \\
\iota_{q}
\end{array}\right]=\iota_{n}
$$

Using $\bar{J}_{n}=\frac{1}{n} \iota_{n} \iota_{n}^{\prime}$, we have

$$
W_{n}^{2} \bar{J}_{n}=\bar{J}_{n}
$$

and hence

$$
E_{n} W_{n}^{2}=\left(I_{n}-\bar{J}_{n}\right) W_{n}^{2}=W_{n}^{2}-\bar{J}_{n} W_{n}^{2}=W_{n}^{2}-\bar{J}_{n}
$$

since E_{n}, W_{n}^{2} and \bar{J}_{n} are symmetric. Using the two equations above, we get

$$
W_{n}^{2} E_{n} W_{n}^{2}=W_{n}^{2}\left(W_{n}^{2}-\bar{J}_{n}\right)=W_{n}^{2}-\bar{J}_{n}
$$

and hence

$$
E_{n} W_{n}^{2} E_{n} W_{n}^{2}=E_{n}\left(W_{n}^{2}-\bar{J}_{n}\right)=E_{n} W_{n}^{2}
$$

since $E_{n} \bar{J}_{n}=0$. Note that $\operatorname{tr}\left(\bar{J}_{n}\right)=1$ and $\operatorname{tr}\left(W_{n}^{2}\right)=\operatorname{tr}\left(\bar{J}_{p}\right)+\operatorname{tr}\left(\bar{J}_{q}\right)=2$ using $\operatorname{tr}\left(\bar{J}_{p}\right)=1$ and $\operatorname{tr}\left(\bar{J}_{q}\right)=1$. Therefore,

$$
\operatorname{tr}\left(E_{n} W_{n}^{2} E_{n} W_{n}^{2}\right)=\operatorname{tr}\left(E_{n} W_{n}^{2}\right)=\operatorname{tr}\left(W_{n}^{2}\right)-\operatorname{tr}\left(\bar{J}_{n}\right)=1
$$

(2) We have

$$
W_{n}^{2} \tilde{X}_{n}=\left[\begin{array}{cc}
\bar{J}_{p} & 0_{p q} \\
0_{q p} & \bar{J}_{q}
\end{array}\right]\left[\begin{array}{l}
X_{p}-\iota_{p} \bar{X} \\
X_{q}-\iota_{q} \bar{X}
\end{array}\right]=\left[\begin{array}{c}
\iota_{p}\left(\bar{X}_{p}-\bar{X}\right) \\
\iota_{q}\left(\bar{X}_{q}-\bar{X}\right)
\end{array}\right],
$$

where $\bar{X}_{p}=\frac{1}{p} \iota_{p}^{\prime} X_{p}$ and $\bar{X}_{q}=\frac{1}{q} \iota_{q}^{\prime} X_{q}$. Because W_{n}^{2} is symmetric and idempotent, i.e. $W_{n}^{2}=W_{n}^{2} W_{n}^{2}$, we have

$$
\begin{aligned}
\tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n} & =\tilde{X}_{n}^{\prime} W_{n}^{2} W_{n}^{2} \tilde{X}_{n}=\left[\begin{array}{ll}
\left(\bar{X}_{p}-\bar{X}\right)^{\prime} \iota_{p}^{\prime} & \left(\bar{X}_{q}-\bar{X}\right)^{\prime} \iota_{q}^{\prime}
\end{array}\right]\left[\begin{array}{l}
\iota_{p}\left(\bar{X}_{p}-\bar{X}\right) \\
\iota_{q}\left(\bar{X}_{q}-\bar{X}\right)
\end{array}\right] \\
& =p\left(\bar{X}_{p}-\bar{X}\right)^{\prime}\left(\bar{X}_{p}-\bar{X}\right)+q\left(\bar{X}_{q}-\bar{X}\right)^{\prime}\left(\bar{X}_{q}-\bar{X}\right)
\end{aligned}
$$

Since

$$
\bar{X}=\frac{1}{n} \iota_{n}^{\prime} X_{n}=\frac{1}{n}\left[\begin{array}{ll}
\iota_{p}^{\prime} & \iota_{q}^{\prime}
\end{array}\right]\left[\begin{array}{l}
X_{p} \\
X_{q}
\end{array}\right]=\frac{1}{n}\left(\iota_{p}^{\prime} X_{p}+\iota_{q}^{\prime} X_{q}\right)=\frac{p}{n} \bar{X}_{p}+\frac{q}{n} \bar{X}_{q},
$$

we have

$$
\bar{X}_{p}-\bar{X}=\bar{X}_{p}-\left(\frac{p}{n} \bar{X}_{p}+\frac{q}{n} \bar{X}_{q}\right)=\frac{q}{n}\left(\bar{X}_{p}-\bar{X}_{q}\right)
$$

and similarly

$$
\bar{X}_{q}-\bar{X}=\bar{X}_{q}-\left(\frac{p}{n} \bar{X}_{p}+\frac{q}{n} \bar{X}_{q}\right)=-\frac{p}{n}\left(\bar{X}_{p}-\bar{X}_{q}\right)
$$

Hence

$$
\begin{aligned}
\frac{1}{n} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n} & =\frac{p}{n}\left(\bar{X}_{p}-\bar{X}\right)^{\prime}\left(\bar{X}_{p}-\bar{X}\right)+\frac{q}{n}\left(\bar{X}_{q}-\bar{X}\right)^{\prime}\left(\bar{X}_{q}-\bar{X}\right) \\
& =\frac{p}{n} \frac{q^{2}}{n^{2}}\left(\bar{X}_{p}-\bar{X}_{q}\right)^{\prime}\left(\bar{X}_{p}-\bar{X}_{q}\right)+\frac{q}{n} \frac{p^{2}}{n^{2}}\left(\bar{X}_{p}-\bar{X}_{q}\right)^{\prime}\left(\bar{X}_{p}-\bar{X}_{q}\right) \\
& =\frac{p q}{n^{2}}\left(\bar{X}_{p}-\bar{X}_{q}\right)^{\prime}\left(\bar{X}_{p}-\bar{X}_{q}\right) \\
& =o_{p}(1)
\end{aligned}
$$

using Assumption 1.
(3) By Lemma 2 in Ding (2021), we have

$$
P_{n}=\bar{J}_{n}+\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime}
$$

Hence

$$
M_{n}=I_{n}-P_{n}=I_{n}-\left[\bar{J}_{n}+\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime}\right]=E_{n}-\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime}
$$

and

$$
M_{n} W_{n}^{2}=\left[E_{n}-\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime}\right] W_{n}^{2}=E_{n} W_{n}^{2}-\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}
$$

As shown in Lemma 1. 1, $\operatorname{tr}\left(E_{n} W_{n}^{2}\right)=1$. Using Assumption 1 and the result in Lemma 12 , we get

$$
\operatorname{tr}\left[\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}\right]=\operatorname{tr}\left[\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\right]=\operatorname{tr}\left[\left(\frac{1}{n} \tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1}\left(\frac{1}{n} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\right)\right]=o_{p}(1) .
$$

Therefore, we obtain

$$
\operatorname{tr}\left(M_{n} W_{n}^{2}\right)=\operatorname{tr}\left(E_{n} W_{n}^{2}\right)-\operatorname{tr}\left[\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}\right]=1+o_{p}(1)
$$

(4) Also,

$$
\begin{aligned}
M_{n} W_{n}^{2} M_{n} W_{n}^{2}= & {\left[E_{n} W_{n}^{2}-\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}\right]\left[E_{n} W_{n}^{2}-\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}\right] } \\
= & E_{n} W_{n}^{2} E_{n} W_{n}^{2}-\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2} E_{n} W_{n}^{2} \\
& -E_{n} W_{n}^{2} \tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}+\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}
\end{aligned}
$$

As shown in Lemma 1. $1, \operatorname{tr}\left(E_{n} W_{n}^{2} E_{n} W_{n}^{2}\right)=1$. Using $W_{n}^{2} E_{n} W_{n}^{2}=E_{n} W_{n}^{2}$ in Lemma 1.1 and $E_{n} \tilde{X}_{n}=\tilde{X}_{n}$, we get

$$
\begin{aligned}
& \operatorname{tr}\left[\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2} E_{n} W_{n}^{2}\right]=\operatorname{tr}\left[\left(\frac{1}{n} \tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1}\left(\frac{1}{n} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\right)\right]=o_{p}(1), \\
& \operatorname{tr}\left[E_{n} W_{n}^{2} \tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}\right]=\operatorname{tr}\left[\left(\frac{1}{n} \tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1}\left(\frac{1}{n} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\right)\right]=o_{p}(1),
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{tr}\left[\tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\left(\tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1} \tilde{X}_{n}^{\prime} W_{n}^{2}\right] \\
= & \operatorname{tr}\left[\left(\frac{1}{n} \tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1}\left(\frac{1}{n} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\right)\left(\frac{1}{n} \tilde{X}_{n}^{\prime} \tilde{X}_{n}\right)^{-1}\left(\frac{1}{n} \tilde{X}_{n}^{\prime} W_{n}^{2} \tilde{X}_{n}\right)\right]=o_{p}(1) .
\end{aligned}
$$

Therefore,

$$
\operatorname{tr}\left(M_{n} W_{n}^{2} M_{n} W_{n}^{2}\right)=1+o_{p}(1)
$$

Lemma 2 Under Assumption 1, we have
1.

$$
(n-k) \mu_{I}=-1+o_{p}(1)
$$

2.

$$
(n-k) \sigma_{I}=\sqrt{2}+o_{p}(1)
$$

Proof. (1) $(n-k) \mu_{I}=\operatorname{tr}\left(M_{n} W_{n}\right)=-\operatorname{tr}\left(M_{n} W_{n}^{2}\right)=-1+o_{p}(1)$ using Lemma 1 .
(2) Since $M_{n} W_{n}=-M_{n} W_{n}^{2}$ and W_{n}^{2} is symmetric, we have

$$
\operatorname{tr}\left(M_{n} W_{n} M_{n} W_{n}\right)=\operatorname{tr}\left(M_{n} W_{n}^{2} M_{n} W_{n}^{2}\right)
$$

In addition, since $M_{n}=M_{n} M_{n}$ and W_{n}^{2} is symmetric, we have

$$
\begin{aligned}
\operatorname{tr}\left(M_{n} W_{n} M_{n} W_{n}^{\prime}\right) & =\operatorname{tr}\left(M_{n} W_{n} M_{n} W_{n}^{\prime} M_{n}\right)=\operatorname{tr}\left[\left(M_{n} W_{n}\right) M_{n}\left(M_{n} W_{n}\right)^{\prime}\right] \\
& =\operatorname{tr}\left[\left(M_{n} W_{n}^{2}\right) M_{n}\left(M_{n} W_{n}^{2}\right)^{\prime}\right]=\operatorname{tr}\left[M_{n} W_{n}^{2} M_{n} W_{n}^{2} M_{n}\right]=\operatorname{tr}\left(M_{n} W_{n}^{2} M_{n} W_{n}^{2}\right) .
\end{aligned}
$$

Using Lemma 1 , we get

$$
\begin{aligned}
(n-k) \sigma_{I} & =(n-k) \sqrt{\frac{\operatorname{tr}\left(M_{n} W_{n} M_{n} W_{n}^{\prime}\right)+\operatorname{tr}\left(M_{n} W_{n} M_{n} W_{n}\right)-\frac{2}{n-k}\left[\operatorname{tr}\left(M_{n} W_{n}\right)\right]^{2}}{(n-k)(n-k+2)}} \\
& =\sqrt{\frac{n-k}{n-k+2}\left\{2 \operatorname{tr}\left(M_{n} W_{n}^{2} M_{n} W_{n}^{2}\right)-\frac{2}{n-k}\left[\operatorname{tr}\left(M_{n} W_{n}^{2}\right)\right]^{2}\right\}} \\
& =\sqrt{2}+o_{p}(1) .
\end{aligned}
$$

B. 1 Proof of Theorem 1

Proof. Because

$$
I^{*}=\frac{I-\mu_{I}}{\sigma_{I}} \leq-\frac{\mu_{I}}{\sigma_{I}} .
$$

where

$$
-\frac{\mu_{I}}{\sigma_{I}}=\frac{-(n-k) \mu_{I}}{(n-k) \sigma_{I}}=\frac{1}{\sqrt{2}}+o_{p}(1)
$$

using Lemma 2. This implies that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(I^{*}>\frac{1}{\sqrt{2}}\right)=0
$$

for all ρ.

Lemma 31.

$$
M_{n} B_{n}^{-1}\left(B_{n}^{-1}\right)^{\prime} M_{n}=M_{n}-\frac{\rho(2+\rho)}{(1+\rho)^{2}} M_{n} W_{n}^{2} M_{n},
$$

2.

$$
M_{n} B_{n}^{-1}\left(B_{n}^{-1}\right)^{\prime} M_{n} W_{n}=M_{n} W_{n}^{2}+\frac{\rho(2+\rho)}{(1+\rho)^{2}} M_{n} W_{n}^{2} M_{n} W_{n}^{2},
$$

Proof. (1) Using the result $M_{n} W_{n}^{2}=-M_{n} W_{n}$ in Section 2, we have

$$
\begin{aligned}
M_{n} W_{n}^{3}= & \left(M_{n} W_{n}^{2}\right) W_{n}=\left(-M_{n} W_{n}\right) W_{n}=-M_{n} W_{n}^{2}=M_{n} W_{n} \\
M_{n} W_{n}^{4}= & \left(M_{n} W_{n}^{3}\right) W_{n}=\left(M_{n} W_{n}\right) W_{n}=M_{n} W_{n}^{2}=-M_{n} W_{n} \\
& \vdots
\end{aligned}
$$

Hence

$$
\begin{aligned}
M_{n} B_{n}^{-1} & =M_{n}\left(I_{n}-\rho W_{n}\right)^{-1} \\
& =M_{n}+\rho M_{n} W_{n}+\rho^{2} M_{n} W_{n}^{2}+\rho^{3} M_{n} W_{n}^{3}+\cdots \\
& =M_{n}+\left(\rho-\rho^{2}+\rho^{3}-\cdots\right) M_{n} W_{n} \\
& =M_{n}+\frac{\rho}{1+\rho} M_{n} W_{n} \\
& =M_{n}-\frac{\rho}{1+\rho} M_{n} W_{n}^{2} .
\end{aligned}
$$

Note that W_{n}^{2} and M_{n} are symmetric and idempotent, with

$$
\begin{aligned}
M_{n} B_{n}^{-1}\left(B_{n}^{-1}\right)^{\prime} M_{n} & =M_{n} B_{n}^{-1}\left(M_{n} B_{n}^{-1}\right)^{\prime} \\
& =\left(M_{n}-\frac{\rho}{1+\rho} M_{n} W_{n}^{2}\right)\left(M_{n}-\frac{\rho}{1+\rho} M_{n} W_{n}^{2}\right)^{\prime} \\
& =\left(M_{n}-\frac{\rho}{1+\rho} M_{n} W_{n}^{2}\right)\left(M_{n}-\frac{\rho}{1+\rho} W_{n}^{2} M_{n}\right) \\
& =M_{n}-\frac{2 \rho}{1+\rho} M_{n} W_{n}^{2} M_{n}+\frac{\rho^{2}}{(1+\rho)^{2}} M_{n} W_{n}^{2} M_{n} \\
& =M_{n}-\frac{\rho(2+\rho)}{(1+\rho)^{2}} M_{n} W_{n}^{2} M_{n}
\end{aligned}
$$

(2) Using the fact that M_{n} is idempotent, we further get

$$
\begin{aligned}
M_{n} B_{n}^{-1}\left(B_{n}^{-1}\right)^{\prime} M_{n} W_{n} & =\left[M_{n} B_{n}^{-1}\left(B_{n}^{-1}\right)^{\prime} M_{n}\right] M_{n} W_{n} \\
& =-\left[M_{n}-\frac{\rho(2+\rho)}{(1+\rho)^{2}} M_{n} W_{n}^{2} M_{n}\right] M_{n} W_{n}^{2} \\
& =-M_{n} W_{n}^{2}+\frac{\rho(2+\rho)}{(1+\rho)^{2}} M_{n} W_{n}^{2} M_{n} W_{n}^{2}
\end{aligned}
$$

Lemma 4 Under Assumption 1, we have
1.

$$
\frac{1}{n-k} \hat{u}_{n}^{\prime} \hat{u}_{n}=\sigma^{2}+o_{p}(1)
$$

2.

$$
\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}-\mu_{I} \hat{u}_{n}^{\prime} \hat{u}_{n}=\frac{\rho(2+\rho)}{(1+\rho)^{2}} \sigma^{2}+o_{p}(1) .
$$

Proof. (1) Since $\hat{u}_{n}=M_{n} u_{n}=M_{n} B_{n}^{-1} \varepsilon_{n}$, we get

$$
\hat{u}_{n}^{\prime} \hat{u}_{n}=\varepsilon_{n}^{\prime}\left(B_{n}^{-1}\right)^{\prime} M_{n} B_{n}^{-1} \varepsilon_{n}
$$

Hence

$$
\begin{aligned}
E\left(\hat{u}_{n}^{\prime} \hat{u}_{n}\right) & =\operatorname{tr}\left[\left(B_{n}^{-1}\right)^{\prime} M_{n} B_{n}^{-1}\right] \sigma^{2} \\
& =\operatorname{tr}\left[M_{n} B_{n}^{-1}\left(B_{n}^{-1}\right)^{\prime} M_{n}\right] \sigma^{2} \\
& =\left[\operatorname{tr}\left(M_{n}\right)-\frac{\rho(2+\rho)}{(1+\rho)^{2}} \operatorname{tr}\left(M_{n} W_{n}^{2} M_{n}\right)\right] \sigma^{2} \\
& =\left[n-k-\frac{\rho(2+\rho)}{(1+\rho)^{2}} \operatorname{tr}\left(M_{n} W_{n}^{2}\right)\right] \sigma^{2}
\end{aligned}
$$

using Lemma 3 and $\operatorname{tr}\left(M_{n}\right)=n-k$. Therefore

$$
\hat{u}_{n}^{\prime} \hat{u}_{n}=\left[n-k-\frac{\rho(2+\rho)}{(1+\rho)^{2}}\right] \sigma^{2}+o_{p}(1)
$$

using Lemma 1 .
(2) Similarly,

$$
\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}=\varepsilon_{n}^{\prime}\left(B_{n}^{-1}\right)^{\prime} M_{n} W_{n} M_{n} B_{n}^{-1} \varepsilon_{n}
$$

Hence

$$
\begin{aligned}
E\left(\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}\right) & =\operatorname{tr}\left[\left(B_{n}^{-1}\right)^{\prime} M_{n} W_{n} M_{n} B_{n}^{-1}\right] \sigma^{2} \\
& =\operatorname{tr}\left[M_{n} W_{n} M_{n} B_{n}^{-1}\left(B_{n}^{-1}\right)^{\prime} M_{n}\right] \sigma^{2} \\
& =-\operatorname{tr}\left(M_{n} W_{n}^{2}\right) \sigma^{2}+\frac{\rho(2+\rho)}{(1+\rho)^{2}} \operatorname{tr}\left(M_{n} W_{n}^{2} M_{n} W_{n}^{2}\right) \sigma^{2}
\end{aligned}
$$

using Lemma 3. Also

$$
\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}=\left[-1+\frac{\rho(2+\rho)}{(1+\rho)^{2}}\right] \sigma^{2}+o_{p}(1)
$$

using Lemma 1 .

Therefore,

$$
\begin{aligned}
& \hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}-\mu_{I} \hat{u}_{n}^{\prime} \hat{u}_{n} \\
= & \hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}+\frac{1}{n-k} \hat{u}_{n}^{\prime} \hat{u}_{n}-\left[(n-k) \mu_{I}+1\right] \frac{1}{n-k} \hat{u}_{n}^{\prime} \hat{u}_{n} \\
= & {\left[-1+\frac{\rho(2+\rho)}{(1+\rho)^{2}}\right] \sigma^{2}-\frac{1}{n-k}\left[n-k-\frac{\rho(2+\rho)}{(1+\rho)^{2}}\right] \sigma^{2}+o_{p}(1) } \\
= & \frac{n-k+1}{n-k} \frac{\rho(2+\rho)}{(1+\rho)^{2}} \sigma^{2}+o_{p}(1)
\end{aligned}
$$

C Proof of Theorem 2

Proof. When $\rho=-1+\frac{1}{\psi_{n}}$, we have

$$
\frac{\rho(2+\rho)}{(1+\rho)^{2}}=\frac{\left(-1+\frac{1}{\psi_{n}}\right)\left(1+\frac{1}{\psi_{n}}\right)}{\left(\frac{1}{\psi_{n}}\right)^{2}}=1-\psi_{n}^{2}
$$

Hence

$$
\begin{aligned}
\hat{u}_{n}^{\prime} \hat{u}_{n} & =\left[n-k-\frac{\rho(2+\rho)}{(1+\rho)^{2}}\right] \sigma^{2}+o_{p}(1) \\
& =\left(n-k-1+\psi_{n}^{2}\right) \sigma^{2}+o_{p}(1)
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}-\mu_{I} \hat{u}_{n}^{\prime} \hat{u}_{n} & =\frac{n-k+1}{n-k} \frac{\rho(2+\rho)}{(1+\rho)^{2}} \sigma^{2}+o_{p}(1) \\
& =\frac{n-k+1}{n-k}\left(1-\psi_{n}^{2}\right) \sigma^{2}+o_{p}(1)
\end{aligned}
$$

so that
$I-\mu_{I}=\frac{\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}}{\hat{u}_{n}^{\prime} \hat{u}_{n}}-\mu_{I}=\frac{\hat{u}_{n}^{\prime} W_{n} \hat{u}_{n}-\mu_{I} \hat{u}_{n}^{\prime} \hat{u}_{n}}{\hat{u}_{n}^{\prime} \hat{u}_{n}}=\frac{\frac{n-k+1}{n-k}\left(1-\psi_{n}^{2}\right) \sigma^{2}}{\left(n-k-1+\psi_{n}^{2}\right) \sigma^{2}}+o_{p}(1)=\frac{(n-k+1)\left(1-\psi_{n}^{2}\right)}{(n-k)\left(n-k-1+\psi_{n}^{2}\right)}+o_{p}(1)$
using Lemma 2. Therefore

$$
I^{*}=\frac{(n-k)\left(I-\mu_{I}\right)}{(n-k) \sigma_{I}}=\frac{(n-k+1)\left(1-\psi_{n}^{2}\right)}{\sqrt{2}\left(n-k-1+\psi_{n}^{2}\right)}+o_{p}(1)= \begin{cases}O_{p}\left(-\psi_{n}^{2}\right), & \text { if } \psi_{n}^{2} \ll n \\ O_{p}(-n), & \text { if } \psi_{n}^{2} \gg n\end{cases}
$$

using Lemma 1, which implies $I^{*} \xrightarrow{p}-\infty$ if $\psi_{n} \rightarrow \infty$ as $n \rightarrow \infty$. This means that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(I^{*}<\eta\right)=1
$$

for every constant η.

C. 1 The LM test in a Spatial Lag Model under a Complete Bipartite Network

The following spatial lag model was considered by Baltagi and Liu (2009):

$$
\begin{equation*}
y_{n}=\rho W_{n} y_{n}+X_{n} \beta+\varepsilon_{n} \tag{C1}
\end{equation*}
$$

where y_{n} is an $n \times 1$ vector for the dependent variable. ι_{n} is a vector of ones of dimension $n . X_{n}$ is an $n \times k$ matrix of exogenous variables including a constant. β is a $k \times 1$ vector of parameters. ρ is a scalar parameter between -1 and 1. u_{n} and ε_{n} are $n \times 1$ vectors, where ε_{n} is independent and identically distributed as Normal with zero mean and variance σ^{2}. The LM test statistic for the null hypothesis of $H_{0}: \rho=0$ is given by:

$$
L M=\frac{\left(\hat{u}_{n}^{\prime} W_{n} y_{n} / \hat{\sigma}^{2}\right)^{2}}{\tilde{D}_{n}+T_{n}}
$$

where \hat{u}_{n} is the OLS residual from regressing y_{n} on X_{n}, and $\hat{\sigma}^{2}=\frac{1}{n} \hat{u}_{n}^{\prime} \hat{u}_{n} . \tilde{D}_{n}=\left(W_{n} X_{n} \hat{\beta}\right)^{\prime} M_{n} W_{n} X_{n} \hat{\beta} / \hat{\sigma}^{2}$ where $\hat{\beta}$ is the OLS estimator, $T_{n}=\operatorname{tr}\left(W_{n}^{2}+W_{n}^{\prime} W_{n}\right)$. Baltagi and Liu (2009) showed that when $W_{n}=$ $\frac{1}{(n-1)}\left(\iota_{n} \iota_{n}^{\prime}-I_{n}\right), L M \xrightarrow{p} \frac{1}{2}$.

In this Appendix, we check the performance of this LM test under a complete bipartite network spatial weighting matrix using simulations. We generate the data from Equation (C1), where $X_{n}=\left(\iota_{n}, x_{1 n}, x_{2 n}\right)$ and $\beta=(5,1,1)^{\prime} . \iota_{n}$ is a vector of ones of dimension $n . x_{1 n}, x_{2 n}$ and ε_{n} are $n \times 1$ vectors with elements $x_{1 i} \stackrel{i i d}{\sim}$ $\sqrt{6} U(0,1), x_{2 i} \stackrel{i i d}{\sim} N(0,1) / \sqrt{2}$ and $\varepsilon_{i} \stackrel{i i d}{\sim} N(0,1) . \rho$ varies over the range $(-0.99,-0.9,-0.6,-0.3,0,0.3,0.6$, $0.9,0.99)$. The $n \times n$ spatial weight matrix W_{n} is the complete bipartite network spatial weighting matrix. We let $\frac{p}{n}=0.3$. The sample sizes considered are $n=(50,200)$. For each experiment, we perform 10,000 replications.

Table 4 reports the summary statistics for the LM test and the empirical frequency of $L M>3.841$ corresponding to the rejection rates of the null hypothesis $H_{0}: \rho=0$ against the alternative hypothesis of no spatial autocorrelation $H_{1}: \rho \neq 0 n^{3}$ These simulations show that the $L M$ test for spatial lag under a complete bipartite network spatial weighting matrix yield similar performance to that of the standardized Moran I^{*} test for the spatial error model. In particular, this $L M$ test can never reject the null hypothesis of zero spatial correlation when the true ρ is positive. In contrast, this $L M$ test will always reject the null hypothesis of zero spatial correlation when the true ρ is negative and close to -1 .

[^5]Table 4: Simulation Results of the LM Test Statistic $(p / n=0.3)$

| $n=50$ | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| ρ | -0.99 | -0.9 | -0.6 | -0.3 | 0 | 0.3 | 0.6 | 0.9 | 0.99 |
| Min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1st Quartile | 470.711 | 38.480 | 0.170 | 0.014 | 0.004 | 0.002 | 0.001 | 0.001 | 0.001 |
| Median | 507.278 | 206.388 | 3.523 | 0.260 | 0.045 | 0.019 | 0.012 | 0.007 | 0.007 |
| Mean | 468.893 | 207.992 | 19.571 | 2.937 | 0.677 | 0.220 | 0.096 | 0.052 | 0.048 |
| 3rd Quartile | 520.001 | 357.808 | 22.569 | 2.324 | 0.378 | 0.116 | 0.061 | 0.040 | 0.037 |
| Max | 530.469 | 520.195 | 308.540 | 132.715 | 55.266 | 16.736 | 7.560 | 3.583 | 3.971 |
| Frequency of $L M>3.841$ | 0.989 | 0.874 | 0.491 | 0.186 | 0.045 | 0.008 | 0.001 | 0.000 | 0.000 |

$n=200$									
ρ	-0.99	-0.9	-0.6	-0.3	0	0.3	0.6	0.9	0.99
Min	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1st Quartile	6879.291	53.859	0.168	0.012	0.004	0.002	0.001	0.001	0.001
Median	7945.421	732.233	3.637	0.218	0.044	0.018	0.010	0.007	0.006
Mean	6894.053	1423.008	35.373	3.523	0.695	0.199	0.084	0.047	0.041
3rd Quartile	8225.423	2454.621	28.683	2.170	0.378	0.113	0.054	0.038	0.032
Max	8404.211	7148.934	1156.906	372.931	38.683	14.767	5.070	3.370	2.288
Frequency of $L M>3.841$	0.986	0.875	0.493	0.187	0.045	0.006	0.001	0.000	0.000

[^6]
References

Baltagi, B. H. and Liu, L. (2009). Spatial Lag Test with Equal Weights, Economics Letters, 104(2), 81-82.
Ding, P. (2021). The Frisch-Waugh-Lovell Theorem for Standard Errors. Statistics \& Probability Letters, 168, 108945.

[^0]: ${ }^{1}$ It is worth pointing out that Theorem 1 is for the Moran I test on the regression residuals. It may not hold if one uses the Moran I test on the original data. In addition, as we mentioned earlier, the inclusion of the intercept term in X_{n} is crucial to Theorem 1 as it ensures $M_{n} W_{n}=-M_{n} W_{n}^{2}$.

[^1]: ${ }^{2}$ Additional results of $\frac{p}{n}=0.1$ and 0.5 are available in the supplemental Appendix available upon request from the authors.

[^2]: Note: 10,000 replications.

[^3]: Note: 10,000 replications.

[^4]: Note: 10,000 replications.

[^5]: ${ }^{3}$ For a Chi-squared distribution with one degree of freedom, the critical value at the 0.05 significance level is 3.841 .

[^6]: Note: 10,000 replications.

