Skip to content

Baltagi article on spatial moving average errors published in Regional Science and Urban Economics

Apr 30, 2019

A time-space dynamic panel data model with spatial moving average errors

Badi H. Baltagi, Bernard Fingleton & Alain Pirotte

Regional Science and Urban Economics, April 2019

Badi H. Baltagi

Badi H. Baltagi


This paper focuses on the estimation and predictive performance of several estimators for the time-space dynamic panel data model with Spatial Moving Average Random Effects (SMA-RE) structure of the disturbances. A dynamic spatial Generalized Moments (GM) estimator is proposed which combines the approaches proposed by Baltagi et al. (2014) and Fingleton (2008a,b). The main idea is to mix non-spatial and spatial instruments to obtain consistent estimates of the parameters. Then, a forecasting approach is proposed and a linear predictor is derived. Using Monte Carlo simulations, the authors compare the short-run and long-run effects and evaluate the predictive efficiencies of optimal and various suboptimal predictors using the Root Mean Square Error (RMSE) criterion. Last, their approach is illustrated by an application in geographical economics which studies the employment levels across 255 NUTS regions of the EU over the period 2001–2012, with the last two years reserved for prediction.