Skip to content

Baltagi study on dynamic spatial panel data forecasting published in Oxford BES

Jan 31, 2014

Estimating and Forecasting with a Dynamic Spatial Panel Data Model

Badi H. Baltagi, Bernard Fingleton & Alain Pirotte

Oxford Bulletin of Economics and Statistics, January 2014

Badi H. Baltagi

Badi H. Baltagi


This study focuses on the estimation and predictive performance of several estimators for the dynamic and autoregressive spatial lag panel data model with spatially correlated disturbances. In the spirit of Arellano and Bond (1991) and Mutl (2006), a dynamic spatial generalized method of moments (GMM) estimator is proposed based on Kapoor, Kelejian and Prucha (2007) for the spatial autoregressive (SAR) error model. The main idea is to mix non-spatial and spatial instruments to obtain consistent estimates of the parameters. Then, a linear predictor of this spatial dynamic model is derived. Using Monte Carlo simulations, the authors compare the performance of the GMM spatial estimator to that of spatial and non-spatial estimators and illustrate their approach with an application to new economic geography.